Siber Systems DataAccess Library COM version Programmers Guide
19

SIBER SYSTEMS

DATA ACCESS COM LIBRARY

MANUAL

Copyright © Siber Systems 2000-2006

DataAccessCOM manual

21. Introduction

21.1. Cobol Data Files Everywhere

21.2. Why Reading Cobol Data Is Hard

21.3. Siber Systems DataAccess Library Features

31.4. Supported Cobol data file formats

41.5. Supported Cobol Data formats

52. Format of Siber Systems FDD and RDD files

52.1. Format of FDD file

62.2. Format of RDD file

103. Opening and closing files

103.1. Error codes

113.2. Opening file

123.3. Applying file record structures from record structure description file

133.4. Generating record structure by analyzing data file

133.5. Closing files

144. Reading files

144.1. DataAccess indices and Cobol Record Keys

154.2. Reading file sequentially

154.3. Reading file by index

174.4. Reading file by record number

174.5. Filters

195. Accessing data

195.1. Accessing fields

195.2. Field properties

205.3. Record properties

225.5. Recovering index structure

226. Deploying DataAccess application

1. Introduction

1.1. Cobol Data Files Everywhere

A lot of important data collected in the last 40 years by corporations and governments resides in Cobol data files.

Today languages other than Cobol are often used for data processing and programs in these languages need to read legacy Cobol data files. Also you may want to convert Cobol data files to modern formats such as XML, CSV, DBF, Excel, Oracle, etc.

DataAccess library does just that – it converts Cobol data files to modern formats and makes it available to programs in languages such as VB, C++, C#, Java.

1.2. Why Reading Cobol Data Is Hard

Cobol data files do not contain information about their own organization and record structure. That is, if you have just a Cobol data file and you do not have a Cobol program capable of writing or reading this file, you cannot correctly interpret the data contained in this file.

For every Cobol data file that you want to be able to read and interpret, you need the following:

· SELECT statement for the file. It comes from the Input-Output Section of Environment Division of the program that wrote the file. This statement tells the system how the file is organized: it contains file organization, file access mode, etc.

· FD statement for the file. It comes from the File Section of Data Division of the program that wrote the file. This statement tells the system how the file record is organized: it contains record field lengths, offsets, usages, pictures, etc.

· The Cobol data file itself.

Even if you have all 3 components as described above, reading and interpreting the data is still difficult:

· You need to extract SELECT and FD statements for the file from the Cobol program. Therefore you need a specialized Cobol parser that does it.

· You need to parse the extracted SELECT and FD statements and get file and record information from these statements. Again you need an FD/SELECT statement parser and record layout builder.

· Finally, once you have all file parameters and record layout, you need to read the actual Cobol data file and convert the record that you read to required non-Cobol format. Since some of Cobol data formats are not used by any other language or database, interpreting Cobol data is far from trivial.

So developing a program that can read and interpret Cobol data files seems to be rather complicated. It is complicated.

1.3. Siber Systems DataAccess Library Features

Siber Systems DataAccess library allows you:

· Reading Cobol data files sequentially in physical order;

· Reading Cobol data files sequentially in index order;

· Reading Cobol data files by index;

· Reading Cobol Data files by record number (not all formats);

· Restoring the record structure of Cobol data file;

· Determining record length of sequential files;

· Modifying stored record layout: renaming fields, changing its usage, sign scheme, translation scheme (now supported ASCII and EBCDIC), field coordinates in record (its offset and length), copying, merging and splitting fields;

· Getting raw content of record and fields;

· Getting HEX representation of field or record;

· Converting dates from Cobol data file into generic Date regarding Year2000;

· Available as generic library to use in your C++ project;

· Available as COM library to use in any COM-enabled environment such as Microsoft Visual C++, Microsoft Visual Basic, Microsoft C# etc.

1.4. Supported Cobol data file formats

DataAccess supports several Cobol physical formats. The list of supported formats is growing, so your copy of DataAccess can support more formats and more reading methods tor existing formats. Also Cobol Data file may be sequential (assuming reading it sequentially), relative (assuming reading it specifying record number), indexed (assuming reading it using key value) and line sequential (contains lines separated with line break symbol).

DataAccess library supports the following file formats:

Format MF – MicroFocus Cobol IDXFORMAT4 and oldFormat:

· sequential files: reading sequentially, reading by record number;

· relative files: reading sequentially, reading by record number;

· line sequential files: reading sequentially, partial support;

· uncompressed indexed files: reading sequentially in physical or index order, reading by index;

· compressed indexed files: reading sequentially in physical order;

· restoring index structure for indexed files.

Format MFSCO – MicroFocus Cobol on SCO Unix format:

· sequential files: reading sequentially, reading by record number;

· relative files: reading sequentially, reading by record number;

· line sequential files: reading sequentially, partial support;

· indexed files: reading sequentially in physical or index order, reading by index, reading by record number;

· restoring index structure for indexed files.

Format MF8 – MicroFocus Cobol IDXFORMAT8:

· sequential files: reading sequentially, reading by record number;

· relative files: reading sequentially, reading by record number;

· line sequential files: reading sequentially, partial support;

· indexed files: reading sequentially in physical or index order, reading by index;

· restoring index structure for indexed files.

Format RM – Ryan McFarland Cobol:

· sequential files: reading sequentially;

· relative files: reading sequentially, restoring record length;

· line sequential files: reading sequentially, partial support;

· indexed files: reading sequentially in physical or index order, reading by index;

· restoring index structure for indexed files.

Format FSC – Fujitsu Cobol:

· sequential files: reading sequentially;

· relative files: reading sequentially;

· line sequential files: reading sequentially, partial support;

· indexed files: reading sequentially in physical or index order, reading by index;

· restoring index structure for indexed files.

Format ACU – ACUCobol Vision3, Vision4 and Vision5:

· sequential files: reading sequentially;

· relative files: reading sequentially;

· line sequential files: reading sequentially, partial support;

· indexed files: reading sequentially in physical or index order, reading by index;

· restoring index structure for indexed files.

Format VIS – VisualCobol:

· sequential files: reading sequentially and by record number;

· relative files: reading sequentially and by record number;

· indexed files: reading sequentially in physical order;

· restoring index structure for indexed files – only number of indices

Format WANG – Wang Cobol:

· sequential files: reading sequentially;

· indexed files: reading sequentially in physical order, reading by index;

· restoring index structure for indexed files.

Format ICOBOL – InteractiveCobol:

· sequential files: reading sequentially;

· indexed files: reading sequentially in physical order;

· restoring index structure for indexed files.

Format SEQ – generic sequential files:

· sequential and relative files: reading sequentially and by record number;

· restoring record length for file – statistical analysis.

Format AUTO:

· automatically determine appropriate format of indexed file, then use corresponding reader.

1.5. Supported Cobol Data formats

DataAccess supports the following Cobol data formats:

Field usage:

C++ : enum DrFieldUsage

COM : enum CDAFieldUsage

.NET : class COMACCESSLib.CDAFieldUsage

CDA_U_UNKNOWN - Unknown usage

CDA_U_NONE – no USAGE clause, text data

CDA_U_DISPLAY – DISPLAY, numeric data, FSC

CDA_U_DISPLAY_MF – MF modification of DISPLAY format

CDA_U_DISPLAY_RM – RM modification of DISPLAY format

CDA_U_DISPLAY_FSC – FSC modification of DISPLAY format

CDA_U_DISPLAY_ACU – ACU modification of DISPLAY format

CDA_U_COMP – USAGE is COMP (all formats except RM)

CDA_U_COMP_RM – RM modification of COMP, ACU COMP-2

CDA_U_COMP_1 – COMP-1 (MF, FSC) – Internal float (single)

CDA_U_COMP_1_RM – COMP-1 (RM)

CDA_U_COMP_2 – COMP-2 (MF, FSC) – Internal float (double)

CDA_U_COMP_3 – COMP-3 (all formats except ACU)

CDA_U_COMP_3_ACU – COMP-3 (ACU)

CDA_U_COMP_4 – COMP-4 (MF)

CDA_U_COMP_5 – COMP-5 (MF, FSC)

CDA_U_COMP_6 – COMP-6 (MF)

CDA_U_COMP_6_RM – COMP-6 (RM)

CDA_U_COMP_X – COMP-X (MF)

CDA_U_BINARY – BINARY

CDA_U_BIT – BIT (FSC, limited support)

CDA_U_DISPLAY_E – DISPLAY, Numeric-Edited data item

CDA_U_DISPLAY_F – DISPLAY, External Float data item

Sign for numeric values:

C++ : enum DrFieldSign

COM : enum CDAFieldSign

.NET : class COMACCESSLib.CDAFieldSign

CDA_S_NONE – unsigned value

CDA_S_LEAD – sign is leading (DISPLAY values only)

CDA_S_LEAD_SEP – sign is leading separate

CDA_S_TRAIL – sign is trailing (DISPLAY values only)

CDA_S_TRAIL_SEP – sign is trailing separate

CDA_S_LEAD_EBCDIC – sign is leading, EBCDIC form

CDA_S_TRAIL_EBCDIC – sign is trailing, EBCDIC form

Translation schemes:

C++ : enum DrAlphabet

COM : enum CDAAlphabet

.NET : class COMACCESSLib.CDAAlphabet

CDA_ALPH_ASCII – data is in ASCII

CDA_ALPH_EBCDIC – data is in EBCDIC

2. Format of Siber Systems FDD and RDD files

2.1. Format of FDD file

FDD file describes the Cobol data file. It contains all data that is needed to read the file.

FDD file usually has *.FDD extension.

FDD file format is simple and it is easily readable by computer programs.

FDD file consists of lines. Line can be of any length. There is no line continuation character, so lines cannot be broken.

Lines that start with '#' or '*' or '/' are comment lines and as such they are ignored.

Non-comment lines consist of fields. Fields are separated by one or more spaces (' ') or TABs ('\t'). Each field consists of non-space characters.

First field of a line is a keyword that defines the interpretation of the remainder of the line. Every keyword starts a command. All commands take exactly one line.

The following commands are available:

FILE cobol-file-name

Specifies file-name as it appears in the Cobol program in FD and SELECT statements. This is here for informational purposes only.

RDDFILE file-name
Specifies name of the RDD or XFD file that describes structure of the file record. If file-name contains spaces or special characters, it must be enclosed in ' or " quotes. If file-name is not absolute, then it is relative to the directory of FDD file that contains this RDDFILE command. You may have several RDD files defined for one data record. If file-name is specified as <INCLUDE>, it means that RDD file has the same name as FDD file. In that case. RDD information should be bounded with .FDDCOMMENT/.ENDCOMMENT pair and FDD information with .RDDCOMMENT/.ENDCOMMENT pair.

DATAFILE file-name

Specifies name of the Cobol data file that contains the actual data. If file-name contains spaces or special characters, it must be enclosed in ' or " quotes. If file-name is not absolute, then it is relative to the directory of FDD file that contains this DATAFILE command. Exactly one DATAFILE command must be present.

ORGANIZATION org-type
Specifies data file organization. org-type can be one of the following:

SEQUENTIAL – Sequential file

LINESEQUENTIAL – Line Sequential file

INDEXED – Indexed file

RELATIVE – Relative file

ACCESSMODE am-type

The parameter is deprecated.

FILEFORMAT format-type

Specifies vendor-specific physical format of the data file. See list of available formats above.

.FDDCOMMENT
Starts a part of file that will be skipped when the file is reading as FDD file.

.RDDCOMMENT

Starts a part of file that will be skipped when the file is reading as RDD file.

.COMMENT

Starts a comment

.ENDCOMMENT

Finishes the comment

2.2. Format of RDD file

RDD file describes the exact format of the Cobol data record (01 or FD record description). RDD file usually has *.RDD extension.

RDD file consists of lines. Line can be of any length. There is no line continuation character, so lines cannot be broken.

Lines that start with '#' or '*' or '/' are comment lines and as such they are ignored.

Non-comment lines consist of fields. Fields are separated by one or more spaces (' ') or TABs ('\t'). Each field consists of non-space characters.

If a particular field has no value (is empty), it is represented by '@' character.

First field of a line is a keyword that defines the interpretation of the remainder of the line.

RDD file usually comes in encrypted format. There’s a tool to convert it to human-readaple form, this tool is available from Siber Systems. DataAccess understands both encrypted and plain formats.

The following line types are available in RDD file:

DATA line defines data item.

This is the most popular line in RDD file.

DATA log-level phys-level name category usage sign occurs-from occurs-to offset bit-offset length picture [date-picture]

(all these items appear on one line in RDD file)

log-level is logical level of the item in the hierarchy of data items. Starts at 0 and is incremented by 1. Can be 0, 1, 2, 3, 4, ... This parameter is currently ignored by DataAccess.

phys-level is physical level of the item as specified in the Cobol program. Has exactly 2 numeric decimal characters. Can be: 01, 02, ..., 05, 06, ..., 10, ..., 49. This parameter is currently ignored by DataAccess.

name is the name of the data item. Conforms to Cobol rules for user-defined names. If name is empty (@ character), then this is FILLER data item.

category is effective category of the data item. It can have on the following values:

G
group item

I
index

P
pointer

PP
procedure pointer

A
alphabetic

N
numeric

AN
alphanumeric

AE
alphanumeric edited

NE
numeric edited

IF
internal float

EF
external float

B
bit

J
national (usually Japanese)

JE
national edited

usage is effective USAGE clause of the data item. Effective usage means: If this item has no usage clause, then the usage clause of the nearest ancestor of the data item is used. If none of ancestors has usage clause, then USAGE DISPLAY is used. Usage can be one of the following:

D
DR_U_DISPLAY, DR_U_DISPLAY_FSC

DM
DR_U_DISPLAY_MF

DR
DR_U_DISPLAY_RM, DR_U_DISPLAY_ACU

CR
DR_COMP_RM

C
DR_U_BINARY, DR_U_COMP

0
DR_U_COMP_0

1R
DR_U_COMP_1_RM

4
DR_U_COMP_4

5
DR_U_COMP_5

6R
DR_U_COMP_6_RM

X
DR_U_COMP_X

PD
DR_U_COMP_3

3
DR_U_COMP_3

3A
DR_U_COMP_3_ACU

1
DR_U_COMP_1

2
DR_U_COMP_2

B
DR_U_BIT

On DM and DR: D (generic DISPLAY) will work in place of DM and DR most of the time and you do not need to specify DM or DR. However, if you use reading by index, then the actual DM or DR specifiers must be used.

sign is effective SIGN clause of the data item. It can be one of the following:

L
DR_S_LEAD

LS
DR_S_LEAD_SEP

LE
DR_S_LEAD_EBCDIC

T
DR_S_TRAL

TS
DR_S_TRAIL_SEP

TE
DR_S_TRAIL_EBCDIC

@
no sign clause

occurs-from occurs-to describes the OCCURS clause of the data item:

@
@
no OCCURS clause

n1
@
OCCURS n1 TIMES

n1
n2
OCCURS <n1> TO <n2> TIMES DEPENDING ON ... (variable record length)

offset is decimal number that encodes byte offset of this data item from the start of the record. Can be 0, 1, 2, and up.

bit-offset is decimal number that encodes bit offset of this data item from the start of the byte

designated in offset. Can be not 0 only for BIT items. Thus full-bit-offset = offset*8 + bit-offset.

This is FSC-specific.

length is decimal number that encodes length of this data item in bytes.

For BIT items length is is also in bytes. The length of BIT item in bits is equal to the length of unrolled picture string of the item.

picture is PICTURE clause character string.

date-picture, if it is present, tells the systems that this data item contains date and/or time and it gives the format of date/time presentation.

Using this format, the system parses the date/time data item and stores it internally as a date/time item, so that at output time date/time-specific formatting can be applied to this data item.

date-picture can be present only in numeric and numeric-edited data items. The number that represents date/time is parsed by the system according to the format specified in date-picture.

date-picture can contain the following substrings:

YY
2-digit year

YYYY
4-digit year

MM
2-digit month: ' 1', '01', ' 2', '02', ..., '11', '12'

DD
2-digit day: ' 1', '01', ' 2', '02', ..., '30', '31'

HH
2-digit hour: '00', ' 0', ' ', ' 1', '01', ..., '23'

NN
2-digit minute: '00', '01', ..., '59'

SS
2-digit second: '00', '01', ..., '59'

B
Unused position

All characters used for separating different time components ('/' ':' ',' '.') are removed from the data item before analyzing it using this template.

That is, if you have numeric-edited data item which stores date time as "98/12/31 23:59:59", then it is turned into numeric data item 981231235959 you should use date-picture YYMMDDHHNNSS to recognize this number as date-time.

DECIMALPOINT line defines a character used to represent decimal point for numeric edited data items.

Available values:

DECIMALPOINT COMMA

DECIMALPOINT PERIOD

If this line is omitted, "DECIMALPOINT PERIOD" assumed.

CURRENCYCHAR line defines a character used as currency symbol.

CURRENCYCHAR char

If this line id omitted, CURRENCYCHAR "$" assumed.

ALPHABET line defines alphabet used for file. It may be EBCDIC or ASCII. If this line is omitted, assumed alphabet is ASCII.

APPLIED_TO may be optionally specified in ALPHABET line after alphabet definition. Valid values are ALL and DISPLAY_ONLY. If "APPLIED_TO ALL" specified, all data read from file should be converted from file's alphabet (some compilers like MicroFocus allow CODE-SET keyword for non-DISPLAY data items). "APPLIED_TO DISPLAY_ONLY" (the default) means that alphabet conversion must be applied to data items whose usage is DISPLAY.

RECORDLENGTH line defines fixed (minimal) record length.

RECORDLENGTH nReclen

nReclen is fixed record length.

MAXRECORDLENGTH line defines maximal record length. Maximal record length is more than fixed record length in case of variable record length (OCCURS..DEPENDING ON present in record definition).

MAXRECORDLENGTH nMaxreclen
nMaxreclen is maximal record length.

Real record length lies between nReclen and nMaxreclen.

.FDDCOMMENT
Starts a part of file that will be skipped when the file is reading as FDD file.

.RDDCOMMENT

Starts a part of file that will be skipped when the file is reading as RDD file.

.COMMENT

Starts a comment

.ENDCOMMENT

Finishes the comment

3. Opening and closing files

We will use the following convention:

VB:

dim vbFile as DataFile

vbFile = new DataFile
C#

COMACCESSLib.IDataFile pDataFile = new COMACCESSLib.DataFileClass();
3.1. Error codes

To check the error, programmer should check the exception code returned by DataAccess. Let’s explain their meaning.

CDA_FERR_NOT_IMPLEMENTED = 0x800400c9

You’re calling function not implemented in your build of DataAccess.

CDA_FERR_ASSERT = 0x800400ca

Internal DataAccess error.

CDA_FERR_BAD_ACCESS_MODE = 0x800400cb

You’re trying to use invalid access mode for a file (say, trying read sequential file by record number which is not always possible), or you specify unknown access mode in FDD file. As ACCESSMODE in FDD is deprecated, this error normally woul not occur.

CDA_FERR_BAD_ORGANIZATION = 0x800400cc

Organization specified in FDD file cannot be parsed.

CDA_FERR_UNKNOWN_FILE_FORMAT = 0x800400cd

Physical (low-level) file format specified in FDD file is not known. Also this error occurs when DataAccess was unable to automatically recognize file format when trying to open data file directly.

CDA_FERR_EOF = 0x800400ce

Attempt to read record behind physical boundary of a file. Usually occurs when reading file sequentially in physical order.

CDA_FERR_RECORD_NOT_FOUND = 0x800400cf

Occurs when a record specified with record number or index lookup value not found in file. Also, when reading file sequentially in index order, means that there are no more record in file.

CDA_FERR_FILE_NOT_FOUND = 0x800400d0

Either FDD, RDD, or data file could not be found.

CDA_FERR_SHARE_VIOLATION = 0x800400d1

Attempt to open locked file.

CDA_FERR_NO_MEMORY = 0x800400d2

Not enough memory.

CDA_FERR_INVALID_INDEX = 0x800400d3

Index you’re trying to use does not exist.

CDA_FERR_FILE_NOT_OPEN = 0x800400d4

File that you’re trying to read was not opened.

CDA_FERR_READ_ERROR = 0x800400d5

Error while reading file.

CDA_FERR_BAD_ALPHABET = 0x800400d6

Invalid alphabet (code page) code specified.

CDA_FERR_BAD_RDD = 0x800400d7

RDD file differs from data file. Most likely, record length in RDD and data file are different.

CDA_FERR_NOT_TRANSLATED = 0x800400d8

Field cannot be translated. This is caused when field you’re accessing does not in fact exist in record, in case of variable record length. Also it occurs when trying to send text to numeric field etc.

CDA_FERR_ERROR = 0x800400d9

Other errors.

CDA_FERR_TRIAL_EXPIRED = 0x800400da

Attempt to read more records than allowed in trial version, or license violation.

CDA_FERR_UNKNOWN_ERROR = 0x800400db

Internal error.

CDA_FERR_SOFT_ERROR = 0x800400dc

“Soft” read error. It is possible to continue reading.

3.2. Opening file

DataAccess library allows you to open Cobol data file with either known or unknown structure.

VB:

	On Error Resume next

vbFile.Open (filename as string [,nGuessSeq as long[, alph as CDAAlphabet]])

if Err.Code <> S_OK

then

MsgBox Err.Description

endif

Err.Clear

On Error Goto 0

C#:

	try

{

pDataFile.Open(string filename, int nGuessSeq, COMACCESSLib.CDAAlphabet alph);
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code

}

filename is global or relative to the current directory path to the file to be opened. This parameter may refer to FDD file (Siber Systems Inc. standard file descriptor) or to pure Cobol data file. If this is the case, the structure of data file will be filled automatically, according to the result of statistical analysis of the data file.

nGuessSeq controls the way how DataAccess will recognize sequential files. Default value is 0. See below.

alph determines the translation scheme for the file being opened. This parameter is used only if you’re guessing the file structure. Possible values:

· CDA_ALPH_ASCII – file has text fields in ASCII code table;

· CDA_ALPH_EBCDIC – file has text fields in mainframe’s EBCDIC code table;

Return value rc=S_OK means file was opened successfully. Otherwise, it contains error code. Error description is also available.

3.3. Applying file record structures from record structure description file

DataAccess allows you to get the record structure:

· from Siber System’s FDD/RDD file;

· from ACU Cobol XFD file;

To read file structure from FDD/RDD file, simply open file using FDD. If you have XFD file for your data file, you may create a custom FDD file which will point to your data file and XFD file. Also, you may open data file without structure and then apply information from FDD/RDD/XFD:

VB:

	On Error Resume next

vbFile.Record.LoadStructure (filename as string)

if Err.Code <> S_OK

then

MsgBox Err.Description

endif

Err.Clear

On Error Goto 0

C#:

	try

{

pDataFile.Record.LoadStructure (string filename);
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code

}

filename should point to FDD, RDD or XFD file.

3.4. Generating record structure by analyzing data file

DataAccess allows you to generate a record structure for data file for which the structure is unknown. Of course this cannot be exact structure, but it can be used as a first approximation.

If you open Cobol Indexed file without known layout information (thus, open it directly instead of opening appropriate FDD file), you in most cases restore its physical format, record length, and coordinates of fields used in record keys exactly – all the information that can be invoked from the file header. For other fields, the results are based on statistical algorithms and are approximate.

To the contrary to indexed files, sequential and relative ones have no any auxiliary information in them as they have no header. So if you open a sequential file without known layout, you even don’t know the length of record.

To say the truth, RyanMcFarland and Fujitsu relative files have record length stored in them, but it is still no way to recognize them automatically.

Due to that, there is a special sequence to open sequential file without known layout information.

VB:

	On Error Resume next

vbFile.FormatID = sFormatId ‘ as string

vbFile.Organization = fOrg ‘ as string

vbFile.Open (filename as string, nGuessSeq as long[, alph as CDAAlphabet])

if Err.Code <> S_OK

then

MsgBox Err.Description

endif

Err.Clear

On Error Goto 0

sFormatId determines physical file format used. Should be “RM” for RyanMcFarland relative files, “FSC” for Fujitsu relative files, and “SEQ” for other relative and all sequential files.

fOrg determines file type. Should be “SEQUENTIAL” or “RELATIVE”.

nGuessSeq controls if DataAccess would try to automatically determine the record length or not. nGuessSeq=0 means determine record length automatically using statistics. If record length is known, nGuessSeq should be equal to it. For RM and FSC relative files, this parameter is ignored.

3.5. Closing files

VB:

	On Error Resume next

vbFile.Close ()

if Err.Code <> S_OK

then

MsgBox Err.Description

endif

Err.Clear

On Error Goto 0

C#:

	try

{

pDataFile.Close();
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code

}

3.6. Other File properties

Operator GotoTop moves read pointer to the beginning of a file. May be inaccessible for concrete file.

Oprerator GotoBottom moves read pointer to the physical end of file. May be inaccessible for concrete file.

Operator ReadPrev reads previous record in physical or index order. May be inaccessible for concrete file.

RecCount is read-only property that indicates the number of records in file. Type long. May be unavailable for concrete file.

RecNumber is read-only property that indicates the number of current record in physical order. Type long. May be unavailable for concrete file.

Organization is read-write property specifying physical file organization. Type string. May be SEQUENTIAL, INDEXED, LINESEQUENTIAL or RELATIVE.

FormatID is read-write property that specifies physical-level file format. Type string. May be one of formats supported by DataAccess.

DataFileName is read-only property that indicates the full path to Cobol Data file. Type string.

IndicesNo is read-only property that represents the number of indices in file. Type long.

Index(nIndex) is read-only property that returns index no.nIndex (type long). Type array[long]. The returned array contains ordinals of fields used in this index.

Operator SaveStructure(sFileName) saves the file and record properties as FDD file sFileName (type string).

Operator ReOpen(recordTemplate) opens the file again, using recordTemplate as a source of record layout information. recordTemplate is DataRecord object.

The goal of this method is following. You may open the file as usual. Then you create several copies of its Record, then alter these records in different way, and then use any record you want to access data in file. This is used, for example, in implementation of Apply/Undo operations in DataViewer.

4. Reading files

4.1. DataAccess indices and Cobol Record Keys

Index in DataAccess is not exactly the same as Cobol Record key. It is possible that you will have no indices for one Cobol Record key and have several indices for another.

DataAccess creates its indices dynamically at the time Cobol Data File is opening. It uses index layout known from the file header and record layout known from record descriptor file or generated automatically (due to index layout for indexed file is always known, it is possible to exactly catch coordinates of fields used in record keys even if full record layout is not known).

For each Cobol Record Key, DataAccess tries to cover it with set of fields. Thus, there may be no coverage, one coverage or several coverages.

Say, you have the following Cobol code:

RECORD KEY IS REC-KEY.

ALTERNATE RECORD KEY IS X-AMOUNT

 WITH DUPLICATES.

…

05 REC-KEY.

10 NAME PIC X(20).

10 ACCOUNT-NO PIC X(20).

05 X-AMOUNT PIC 9(5)V99 DISPLAY.

05 X-AMOUNT2 REDEFINES X-AMOUNT.

10 X-AMOUNT-INT PIC 9(5) DISPLAY.

10 X-AMOUNT-FRACT PIC 99 DISPLAY.

As DataAccess cannot use group items for any significant purpose (such fields have no usage and in fact have no value), the field REC-KEY does not present in record structure at all. So DataAccess will try to cover primary record key with other fields. This coverage will be NAME+ACCOUNT-NO.

When building indices for alternate record key, there will be 2 coverages found: X-AMOUNT and X-AMOUNT-INT+X-AMOUNT-FRACT, as they occupy the same bytes in record.

Thus, DataAccess will build 3 indices:

0: NAME+ACCOUNT-NO

1: X-AMOUNT

2: X-AMOUNT-INT+X-AMOUNT-FRACT

If one then remove, say, field ACCOUNT-NO from FDD, DataAccess will unable to cover primary record key with any subset of fields, so there’ll be no index for that record key.

When DataAccess builds record structure on data file, it generates two kinds of fields. Fields whose names start with AUTOCREATED are fields used in record keys. Others whose names start with GUESSED are not used in record keys.

Important notice: for fields used in record key usage and sign must be specified exactly as in Cobol program. Say, you can successfully read data which usage is DISPLAY specifying Display(generic) usage, or reading signed COMP-3 data using either ACU or generic scheme. But when sending lookup values to DataAccess, these values should be converted into Cobol representation, so exact usage/sign must be known. This is the most common case when reading by index cannot be performed.

4.2. Reading file sequentially

You may read file sequentially either in physical order or on order specified by index. The way you read file is controlled by property IndexInUse. Value of (-1) means reading file in physical order while other values sets reading order to chosen index.

End of reading sequence is indicated either by CDA_FERR_EOF (in case of reading file in physical order) or CDA_FERR_RECORD_NOT_FOUND when reading in index order. Attempt to set unexisting index causes CDA_FERR_INVALID_INDEX.

C#:

	try

{

pDataFile.IndexInUse = nIndex;
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code – invalid index specified

}

try

{

pDataFile.ReadNext();
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code – end of read sequence.

}

You may to switch to reading file in physical order at any time. Switching to reading in index order can only be performed right after opening file or after reading by the same index. So, if you, say, want to read several records in the order of one index and then switch to another, you need to perform index lookup with values read from file and then switch IndexInUse.

4.3. Reading file by index

To read file by index, you need to set lookup value in a record and then perform ReadByIndex. You may use exact (when record values are equal to lookup values) or unexact (when record values are greater or equal than lookup values). You may start searching from the beginning of file or from the current position that is used when reading by duplicate (not-unique) index. In that case, you read first record specifying reading from the beginning of the file. Then you continue reading, specifying reading from the current position. Exception CDA_FERR_RECORD_NOT_FOUND files when there are no more such records.

To choose comparison method, you change Near property. Value of 0 means that you use exact comparison, value of 1 means “greater-or-equal” comparison. Before changing this property, IndexInUse must be set.

C#:

	try

{

pDataFile.IndexInUse = nIndex;
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code – invalid index specified

}

try

{

pDataFile.Near = nMethod
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code – may be invalid index.

}

Let’s assume that you a file with index 0, and this index consists of fields TEXT-KEY which is string and NUMBER-KEY which is number. Let’s assume that index is unique. In the following code, nIndexNumber is a number of index to use and nReadFrom indicates whether to read from the beginning of a file (nReadFrom=0) or from the current position (nReadFrom=1).

C#:

	try

{

pDataFile.Record.get_Item(“TEXT-KEY”).Value = “MyText”;

pDataFile.Record.get_Item(“NUMBER-KEY”).Value=10;
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code – type mismatch

}

try

{

pDataFile.ReadByIndex(nIndexNumber, nReadFrom);
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code – record not found, read error, etc.

}

You need to set lookup values before each call to ReadByIndex.

4.4. Reading file by record number

Reading by record number is possible for relative files, some sequential files and some indexed files.

C#:

	try

{

pDataFile.ReadByRecNumber(nRecordNumber);
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code – record not found, read error, etc.

}

Here, nRecordNumber is physical number of a record in file. First record has number 0.

4.5. Filters

The goal of filters embedded into DataAccess is checking record content against desired values.

Each field in record can be compared with predefined value. Comparisons can be joined with AND or OR logical operations. Then, after you read record, you may check if it conforms the filter by one call.

Important notice: even if you have a filter, the record will be read anyway. After you read it, you should check whether it conforms the filter and then decide use this record or not.

Filters are insensitive to field renaming, copying and splitting and several other alters of record structure.

You may use the following filter operations:

COM : enum CDACompareOper

.NET : class COMACCESSLib.CDACompareOper

CDA_COMPARE_EQ = 1 // Equal

CDA_COMPARE_NE = 2 // NOT equal

CDA_COMPARE_GT = 3 // Greater than

CDA_COMPARE_LT = 4 // Less than

CDA_COMPARE_GE = 5 // Greater or equal than

CDA_COMPARE_LE = 6 // Less or equal than

For string values, comparison is case-sensitive. For case-insensitive comparison, use the following operations:

CDA_COMPARE_EQ_CU = 101

CDA_COMPARE_NE_CU = 102

CDA_COMPARE_GT_CU = 103

CDA_COMPARE_LT_CU = 104

CDA_COMPARE_GE_CU = 105

CDA_COMPARE_LE_CU = 106

The following codes are used to join several compatisons:

CDA_JOIN_AND = 200

CDA_JOIN_OR = 201

Finally, each comparison must return one of CDA_COMPARE_TRUE or CDA_COMPARE_FALSE.

CDA_COMPARE_TRUE = 0

CDA_COMPARE_FALSE = 999

First, you set filter values:

VB:

	vbFile.Record.Item(“KEYNAME”).FilterValue=”MyFilterValue”

vbFile.Record.Item(“KEYNAME”).FilterOper=CDA_COMPARE_EQ_CU

C#:

	try

{

pDataFile.Record.get_Item(“KEYNAME”).FilterValue = “MyFilterValue”;

pDataFile.Record.get_Item(“KEYNAME”).FilterOper=

COMACCESSLib.CDACompareOper.CDA_COMPARE_EQ_CU;
}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code – type mismatch

}

Repeat these steps for all fields used in filter.

Then, after you read record, you may compare it against the filter (use ReadNext in this example):

VB:

	vbFile.ReadNext

If vbFile.Record.ConformsFilter(CDA_JOIN_AND) then

‘ record conforms filter

Else

‘ record does not conform filter

EndIf

C#:

	try

{

pDataFile.ReadNext();

}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code – read errors

}

if (pDataFile.Record.ConformsFilter(COMACCESSLib.CDACompareOper.CDA_JOIN_AND)

{

// Record conforms filter

}

else

{

// Record does not conform filter

}

Parameter of ConformsFilter() sets the join type in case you use several fields in your filter. If you use just one field, set any join type.

If you want to clear all filters, do the following:

C#:

	try

{

pDataFile.Record.ResetFilter();

}

catch (System.Runtime.InteropServices.COMException pException)

{

// error processing code

}

5. Accessing data

5.1. Accessing fields

You may access field within the record using its ordinal (the number from the beginning of a record) or its name. In the last case, if you have several fields with the same name, you will get the first one.

5.2. Field properties

Name is read-write property that represents name of the field taken from RDD/XFD file or generated automatically in guess procedure. Type string.

When you assign new name to the field, DataAccess checks it to follow the following conditions: name contains only letters, digits, dashes and underscores, and starts with a letter. FILLER fields may have reserved name ‘@’ which is thereby also accepted. Attempt to set name that does not follow these conditions lead to exception E_INVALIDARG.

Value is read-write property representing field value. Type variant (object).
When trying to read this property, you may get exception CDA_FERR_NOT_TRANSLATED. Usually this means that this field was not in fact read from file – say, in case of variable record length. Other possible error is type mismatch. In both these cases you get an empty value.

When trying to write this value, you may also get CDA_FERR_NOT_TRANSLATED which means type mismatch – say, attempting to assign text to numeric field.

Blob is read-only property that represents untranslated field content. Type array[byte].

No checks if field was read from record is performed.

ByteOffset is read-write property that represents the physical offset of a field within record. Type long.

When trying to write this property, you may get E_INVALIDARG in case you’re trying to set it apart of record (negative value or value more than maximal record length).

ByteLength is read-write property that represents physical length of a field in bytes. Type long.

When trying to write this property. You get E_INVALIDARG exception if trying to extend the field above the record boundary, or create field longer than it is allowed for its usage (say, trying to create 100-digit number field which usage is BINARY).

Length is read-only property that represents the maximal length of text representation of field value. Type long.
Decimals is read-write property that represents the number of decimal positions in numeric field. Type long. Writing this property is only needed if you want to create Picture for this field automatically. When writing, you get E_INVALIDARG if you’re trying to set it to incorrect value.

Type is read-only value that indicates field type. Type long. Returns ODBC-compartible type code of the field.

Picture is read-write property that represents field Cobol-style Picture. Type string.

The picture should conform to Cobol rules of this clause.

Usage is read-write property that represents field Usage. Type CDAFieldUsage.
Sign is read-write property that represents field Sign. Type CDAFieldSisn.

Alphabet is read-write property that sets translation scheme for field value. Type CDAAlphabet.
CommaType is read-write property that represents the symbol used as decimal comma. Type short (char).
FilterValue is read-write property that represents the value used in record filter. Type variant (object).
FilterOper is read-write value that represents filter comparison operation. Type CDACompareOper.
HasDate is read-only property that shows if this field stores date. Type BOOL.
HasTime is read-only property that shows if this field stores time. Type BOOL.
DateTimePic is read-write property that represents Date Picture of the field. Type string. Date Picture should conform RDD rules for Date Picture.

IsTrial is read-only picture that is TRUE if you use trial version of DataAccess library. Type BOOL. In Trial version, some capabilities may be removed.

Copy is an operator that returns a copy of a field. Type IDataField.
RestorePicture is an operator that automatically restores correct picture for a field basing on Usage, Sign, Length, and Decimals properties.

5.3. Record properties

FieldsNo is read-only property showing the number of fields in record. Type long.
Item(index) is read-only property that is used to access particular field in record. Type IDataField. Parameter index used to determine the field you’re accessing. It may be an ordinal of a field in record (so, be within 0..FieldsNo-1) or the name of a field.

If there are no specified field in record, you receive E_INVALIDARG. If there are more than one field with name given, the first one returned.

Blob is read-only property that contain untranslated record content. Type array[byte].
ByteMinLength is read-only property showing fixed physical record length, in bytes. Type long.

ByteMaxLength is read-only property showing maximal physical record length, in bytes. Type long. May be more than ByteMinLength in case record length is variable. For fixed record length, it equal to ByteMinLength.

IsTrial is read-only property which is TRUE if you’re using trial version of library. Type BOOL.
ShowDateTime is read-write property that alters if DataAccess will generate Date and Time values for fields containing them (TRUE) or return their native representation (FALSE). Type BOOL, default value is TRUE.

Alphabet is read-write property that sets translation scheme for field value. Type CDAAlphabet This value is copied into field’s Alphabet property when DataAccess creates a field within record..
AlphabetForAll is read-write property that controls if Alphabet translation applied to all fields (TRUE) or only to fields whose Usage is a variation of DISPLAY (FALSE). Type BOOL, default value is FALSE.

ConformsFilter (joinType) is read-only property that is TRUE if record conforms filter. Type BOOL. The parameter joinType can be CDA_JOIN_AND or CDA_JOIN_OR.

Operator ResetFilter clears any filters set in record.

Operator Copy returns a copy of record.

Operator SaveStructure(fileName) saves record layout as RDD file. Parameter fileName is name for output file, type string.
Operator LoadStructure(fileName) loads record layout from FDD, RDD or XFD file. Parameter fileName is name of a file woth record structure. Type string. Record length specified in this file must be identical to current record length.

Operator DeleteField(index) removes specified field from record. Parameter index is an ordinal or the name of field being removed.

Operator DuplicateField(index, newName) creates a copy of field referenced by parameter index (ordinal or name) in record. Newly created field has name newName (type string).

Operator MergeNext(index) merges the field referenced by index (ordinal or name) with the next field in record. The next field must physically start right after the index field.

Operator SplitField(index, nSplitPos, sName1, sName2) splits field referenced by index into two fields. These fields get names sName1 and sName2 (type string). First field gets physical length nSplitPos (type long), the second gets remaining part of the source field. Other properties of new fields are set automatically.

Operator AddField adds new field into record.

AddField(

[in] BSTR Name,

[in] long ByteOffset,

[in] long ByteLength,

[in] CDAFieldUsage Usage,

[in] CDAFieldSign Sign,

[in] BSTR Picture,

[in, defaultvalue(CDA_ALPH_ASCII)] CDAAlphabet Alphabet,

[in, defaultvalue(0)] long Decimals,

[in, defaultvalue(0x2d)] short CommaType,

[in, defaultvalue(-1)] long insert_after);

Parameters Name, ByteOffset, ByteLength, Usage, Sign, Picture, Alphabet, Decimals, CommaType are used to fill corresfonding properties if new field. Parameter insert_after used to specify an ordinal of a field being created. Value of (-1) indicates that field is added to the end of record. Otherwise, the field will be inserted after insert_after+1 moving toe rest of the record. Thus, value of 0 means that new field will be the 1st field in record, etc.

5.5. Recovering index structure

Below is an example in C# that types index structure into textBox:

C#:

	long indicesNo = pDataFile.IndicesNo; // Number of indices in file

textBox.AppendText("=== Typing index structure ===\r\n");

int j = 0;

for (j=0; j< indicesNo; j++) // Process each index

{

textBox.AppendText("++ Type index " + j.ToString() + “\r\n”);

int jj = 0;

// Length of array returned by get_Index shows number of fields in index,

// and content of array are ordinals of field used.

int nFieldsInIndex = pDataFile.get_Index(j).Length;

for (jj=0; jj<nFieldsInIndex; jj++) // Process each field in index

{

string fieldName = pDataFile.Record.

get_Item(pDataFile.get_Index(j).GetValue(jj)).

Name;

if (jj > 0) // Will type “+” between names

{

textBox.AppendText("+");

}

textBox.AppendText(fieldName);

}

textBox.AppendText("\r\n");

}

textBox.AppendText("=== Typing index structure done ===\r\n");

6. Deploying DataAccess application

(under construction)

