CobolTransformer
Tools Manual
Version 3-8-4

©1995-2000 by Siber Systems

November 1, 2000

Abstract

This manual describes command-line and visual tools and converters based on CobolTransformer.
Short list of tools: cbl-beau, cbl-grep, cbl-report, cbl2fdd.
Short list of converters: ibm2fsc, mf2fsc, y2k-fix.

Copyright. (© Copyright by Siber Systems 1995-2000.

No part of this software and/or documentation may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated into any language, in any form or by any means, electronic
mechanical, magnetic, optical, manual or otherwise, without the prior written permission of Siber
Systems. http://www.siber.com/.

Inquiries.
Web Site http://www.siber.com/sct/
Pricing, licensing, other pre-sales questions | info@siber.com
Technical support questions support@siber.com

Trademarks. CobolTransformer, CodeTransformer and SourcePrint are registered trademarks
of Siber Systems Inc.

Fujitsu, Fujitsu Software Corporation, Fujitsu COBOL and Fujitsu NetCOBOL are trademarks
or registered trademarks of Fujitsu Ltd.

IBM is a registered trademark of International Business Machines Corporation.

Micro Focus is a registered trademark and Micro Focus COBOL is a trademark of Micro Focus
Limited.

Microsoft, MS-DOS, Windows, Windows 95, and Windows NT are either trademarks or regis-
tered trademarks of Microsoft Corporation.

RM/COBOL is a registered trademark of Liant Software Corporation.
UNISYS is a registered trademark of UNISYS Corporation.

UNIX and X/OPEN are registered trademarks in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Wang is a registered trademark of Wang Laboratories Inc.
Other product names are trademarks or registered trademarks of each company.

Trademark indications are omitted for some system and product names described in this manual.

Contents

1 Running Command Line Converter Tools

1.1 How to Start a Tool
1.2 Using CL-launcher
1.3 Kinds of Command Line Options
1.4 Conversion Steps
1.5 SourcePrint vs PrettyPrint

2 Tool and Converter Options

2.1 Informational Options e
2.2 Reporting Options L e
2.2.1 PrettyPrint File Generation oo
2.3 Common Options from Environment Variables
2.4 Cobol Parser e
2.4.1 Cobol Dialects e
2.4.2 Language Features e
2.4.3 Copy Libraries
244 Messages and Extraso
2.4.5 Length and Offset Computation
2.5 PrettyPrinter L
2.5.1 General Options e
2.5.2 Indentation
2.5.3 Printing out Comments
2.5.4 Line Identification
2.6 Examples L e
2.6.1 Cbl-Beauexample
2.6.2 Ibm2Fscexample
2.7 Return Codes e

3 Cobol Source Tools
3.1 Cobol Beautifier e
3.1.1 General Options e

3.1.2 Renumber Sections Options o

3.1.3 Renumber Paragraph Options
3.1.4 Renumber Data Items (Record Description) Options
3.2 Cobol Grep o
3.2.1 Options e e
3.2.2 Query Language Reference
3.2.3 Query Language Examples o
3.3 Cobol Reporter e
3.3.1 Options e e
3.4 Transformation Runner
3.4.1 Options L e

Cobol Source Converters

4.1 IBM Cobol to Fujitsu Cobol converter
4.1.1 Options o
4.2 Micro Focus Cobol to Fujitsu Cobol converter
4.2.1 Options oL
4.2.2 FilesIncluded
4.3 1ICobol to Fujitsu Cobol converter
4.3.1 Options e
4.4 Year 2000 Window Fix converter L L oo
4.4.1 Options oL

Cobol Data File Converters

5.1 Cobol File Descriptor Extractor
5.1.1 Options e
5.1.2 FDD: File Descriptor Data o
5.1.3 RDD: Record Descriptor Data

5.2 Cobol Data File Format Guess Program
5.2.1 Options e

5.3 Cobol Data File To Flat File Converter
5.3.1 Options e e e

5.4 Cobol Data File To DBase IV DBF File Converter
5.4.1 Options e

5.5 Crystal Reports Cobol Data Reader DLLs

Legal

6.1 Paid-For and Shareware Tool License

6.2 Trial Tool License e

36
36
36
37
37
38
38
39
40
40

41
41
41
42
44
48
48
49
49
50
o1
51

Chapter 1

Running Command Line Converter
Tools

This document describes a generic Siber Systems Converter or Tool that is built using CobolTrans-
former. The tools can be run both from command line and from the Visual CobolTransformer.

These tools have a lot in common, so we created this document that describes the common
properties of these tools.

All command line tools are built using Siber Systems CobolTransformer (SCT) toolkit. If you
need a toolkit to build programs like this, visit us at http://www.siber.com/sct/.

1.1 How to Start a Tool

Use the tool itself to get information about options that it supports. You can do it in several ways:

e tool-name

If you start a tool without any arguments, it will print out its version, its hard-wired options
(trial or production, supported dialects, CobolTransformer link option, etc).

e tool-name -help
Option -help causes tool to print a list of command-line options that it supports. Option

printouts include list of legal values and default values.

General format for tool invocation is:
<tool-name> -optionl -option2 -option3d ... filel file2 file3 ...

This invocation would process Cobol files filel, file2, and file3, ..., each with options
-optionl, —option2, -option3, ...

One invocation of a tool can process multiple files. Wild-carded file names are accepted (applies
only to WIN32 tools).

1.2 Using CL-launcher

CL-launcher is a GUI tool that is used to launch command line tools. It works on WIN32 systems
— Windows 95, Windows 98, Windows NT.

It is used instead of MS DOS Prompt to start our converters and tools.

Its features:

e Log Window Converter tool output is stored in Log Window. It can be saved to text file and
printed.

e Command History Command history is memorized in the registry.

1.3 Kinds of Command Line Options

All options start with -’ (dash). The string that does not start with dash is treated as Cobol source
file name.

The followings kinds of options are accepted:
e Boolean
To set boolean option xxx to True/On specify it as -xxx. To set boolean option xxx to
False/Off specify it as -no-xxx.
e Number
To set number option xxx to number nnn, specify it as ~xxx=nnn.
e String
To set string option xxx to string sss, specify it as -xxx=sss.
e String List

To set string list option xxx to strings s1, s2, ..., sN, specify it as -xxx=s1;s2;...;sN.

W @ 9

Semicolon “;” and comma “,” can be used as separators.

e Number List

To set number list option xxx to numbers ni, n2, ..., nN, specify it as -xxx=n1;n2;...;nN.

Semicolon “;” and comma “,” can be used as separators.

1.4 Conversion Steps

Most tools perform three steps:

e Parsing Turn Cobol program into CobolTransformer Program Tree.
e Conversion/Reporting Convert the Program Tree or produce a report for the Program Tree.

e Code generation Generated Cobol code from the converted Program Tree. This step may be
skipped for reporting-only tools such as cbl-grep or cbl-report.

1.5 SourcePrint vs PrettyPrint

The sequence of steps above is the standard approach to program conversion. The code is generated
according to standard layout rules often referred to as ”pretty printing” rules. Pretty-printed code
removes the difficulties of interpreting untidy code, or of understanding different programmer’s
styles of laying out their code. Consequently, you may see this as an added benefit.

A problem of pretty-printed code is that it usually differs from the original source code. The
differences are minor - words appear in different columns, and some optional words may be skipped
or added. While these differences may seem insignificant, they do not allow you to use diff, or
other automatic file comparison utility, to independently verify which lines were changed by the
tool. This is because the little differences introduced in generating code from the Program Tree
make every line look different to the diff utilities.

The tools therefore offer a SourcePrint option (set by using the -gen-src command line option).
In this feature, the tool stores additional data about the original code in the tree nodes. This allows
the tool to generate Cobol code that does not differ from the original code — down to a single byte
— for the tree fragments that were not changed by conversions. Code that is generated from the
transformed tree nodes is generated in the pretty-printed style.

The benefit of the SourcePrint format is that you can easily and inexpensively verify the con-
versions performed by the tool. When you finish a conversion, you can run a diff utility that
compares the original sources with the converted sources. The generated difference logs reflect
only the changes made by the tool, and not the changes introduced by beautification or other
parsing/printing side effects.

Chapter 2

Tool and Converter Options

2.1

2.2

Informational Options

-help

Displays a list of all the tool options giving the type of option (boolean, number, string, string
list), the current setting, and a brief explanation. The list is displayed after all options have
been accepted from the command line. Default: Off.

-pf
Displays the settings of all the tool options without the type and brief explanations provided

by the -help option. The list is displayed after all options have been accepted from the
command line. Default: Off.

-V

Displays the version number of the tool. Default: On, if no other options specified, otherwise
Off.

Reporting Options

-conv-warn

Warn about transformation problems. On by default.

-conv-info

Produce informational message for every trasnformation performed. Off by default.
-find-only

Show the places where transformations apply, but do not perform them. Please note that this
might produce a list of potentital transformations that would be different from actual list of
transformations because certain transformations when applied make possible (or impossible)
other transformations. Off by default.

-silent

Do not print short summary of the conversion. Off by default.

® -progress

Displays how the conversion is progressing. Line numbers are displayed every 100 lines, and
at the beginning of each copybook.

e -bailout-level

Sets the level of parser error that makes the tool bailout i.e. prevents the tool from processing
the source file further. Levels are:

* warnings
Warning messages give information that does not affect the conversion process.

* errors
Error messages do affect the conversion but they are not severe enough to stop parsing
process.

* severe
Severe errors prevent the parser from continuing.

e -stat

Display brief source program statistics that includes number of lines in the program and the
number of lines of code (LOC).

2.2.1 PrettyPrint File Generation

e —gen-file

Defines the filename to use for the output converted COBOL file. If no name is specified the
base of the input filename is used and suffix specified in -gen-sfx is added to the base.

e -gen-sfx

Defines the extension to use for the output COBOL file. Default: depends on a particular
tool.

e -gen-main-dir

Defines the directory to which the output COBOL file should be written. If no directory name
is specified, directory containing the main input source is used.

2.3 Common Options from Environment Variables

Command line options, as the name suggests, are taken from the command line. However you
may want many files to have the same set of options and it may be inconvenient to add the same
options to command line for every file involved. In this case you can use environment variables
SCT_TOOL_OPTIONS and SCT_FPP_OPTIONS to set the default option values that will be effective for
all files.

Before parsing options from the command line, non-FPP command line tool parses options con-
tained in the environment variable SCT_TOOL_OPTIONS. The individual options in SCT_TOOL_OPTIONS
should be separated by space(s). Options enclosed in double quote characters ” ” can contain spaces.

Since command line options are parsed after the SCT_TOOL_OPTIONS options, options specifed in
command line may override options specified in SCT_TOOL_OPTIONS.

Similarly, FPP command line tools take their options from environment variable
SCT_FPP_OPTIONS.

2.4 Cobol Parser

2.4.1 Cobol Dialects

e -lang

Specify primary Cobol dialect. Dialect can be one of the following COBOL dialects:

ansi74 1974 ANSI COBOL standard
ansi8b 1985 ANSI COBOL standard

0osVs IBM 0OSVS COBOL

vsii IBM VS COBOL II (revision 2, 3 and 4)
saa IBM SAA COBOL (levels 1 and 2)
dosvs IBM DOSVS COBOL

mf Micro Focus

ms Microsoft

xopen X/0PEN COBOL

rm RM COBOL 74

rm35 RM COBOL 85

univac UNISYS COBOL

wang Wang VS COBOL

icobol ICobol

fsc Fujitsu COBOL

net Fujitsu NetCOBOL

Default: ANSI-85.
e -lang2

The secondary dialect can be specified if your program uses two different dialects, or if a
dialect, such as VS COBOL II Release 2, adds on to an earlier dialect, such as OSVS. For
example, to process a VS COBOL II Release 2 program use: -lang=vsii ~lang2=osvs.

Default: none.

e -line-format

Source line format. Determines format of the Cobol source.

* fixed
The standard Cobol format. Columns 1 to 6 contain sequence number, column 7 contains
indicator, columns 8 to 72 contain Cobol code.

* free
Free format. Column 1 contains indicator, columns 2 to 255 contain Cobol code.

* fsc-free
Fujitsu Cobol ”free” format. There is no indicator area, all comments start with ”*>”
Cobol code may appear in any column.

* var

Variable format. Columns 1 to 6 contain sequence number, column 7 contains indicator,
columns 8 to 255 contain Cobol code.

Default: determined by the dialect. For FSC Cobol default line format is variable, for ICobol
it is free and for all other Cobol dialects default line format is fixed.

e -progid-comments
Allows comments to immediately follow the Program-ID in the PROGRAM-ID paragraph.
Default: Off.

e -sep-space-reqd

Generally IBM COBOL, and other dialects, require spaces after separator characters such as
comma and semicolon. Some compilers have allowed the space to be omitted, for example
allowing ARRAY (I, J). To prevent code like this, turn this option Off: ~sep-space-reqd=no).
-sep-space-reqd=yes turns the checking On. -sep-space-reqd=dial determines whether to re-
quire spaces or not based by Cobol dialect. Currently MF, MS and ICobol dialects automat-
ically cause -sep-space-reqd=no.

Default: dial.
e -exclude-keywords

Gives a list of COBOL words, separated by semi-colons “;” that should be excluded from the
list of keywords when parsing the program to be converted. These words can then be used as
user-defined words (for data item names, etc) within the program.

Default: none.

2.4.2 Language Features

e -set-constants

Provides the same function as the Micro Focus CONSTANT compiler directive. This directive
allows you to use constant names in your program but set their values on the command line.
The effect is as if you declared a 78-level item with that value.

Full format of the option is:
set-constants=[const-name-1’string-value’,]... [const-name-2(numeric-value),]...

Quotes indicate the value is a string; parentheses indicate that it is a numeric value. You must
use single quotes, not double quotes, and there must be no spaces between any items in the
-set-constants option. All constants must be defined in a single -set-constants option.

Default: none.

e -assign-external

If neither EXTERNAL nor DYNAMIC are specified in the ASSIGN TO clause, tells the tool
to assume the (Micro Focus) assignment is EXTERNAL. If -no-assign-external (default)
is specified the assignment is assumed to be DYNAMIC.

Default: Off.

e -sql

Parse SQL in EXEC SQL statements. If this option is Off, EXEC SQL statements are passed
thru as a sequence of tokens. If this option is On, EXEC SQL statements are parsed into a
tree, so that they can be analyzed and transformed.

Default: On.
e -Cics

On: Parse CICS statements embedded into EXEC CICS ... END-EXEC. Off: let CICS go
through as a sequence of tokens.

Default: Off.

e -cics-eib
Add CICS EIB data block at the beginning of LINKAGE SECTION.
Default: Off.

2.4.3 Copy Libraries

e -copylib-dir
Specify list of directories searched for COPY library files.
Directory names can be absolute or relative to the working directory.

b 9
y -

Directory names are separated by semicolons ”;” or comma
” N

Directory names that contain spaces must be enclosed in quotes

Both ”/” (slash) and ”\” (backward slash) can be used as separators of individual directory
names in full directory names.

If library is specified explicitly:
COPY file OF library.

then library is used as the name of environment variable. This variable must contain the
directory name in which this library is located.

Default: only the current working directory (”.”) is searched.
e -copylib-sfx

Defines the extension (suffix) to append to COPY library file names when the extension is
not specified in the program source (as in ?COPY file.”. When file name suffix is explicitly
specified, as in "COPY ”file.ext”.” then the default suffix is not added. Note that the period
(”.”) needs to be specified as part of the extension string.

If -copynames-case=lower and COPY file "FiLe.SFX” is not found, try lowercase version
"file.sfx” of the file name.

If —~copynames-case=upper and COPY file "FiLe.sfx” is not found, try uppercase version
"FILE.SFX” of the file name.

If -copynames-case=exact then COPY file name should match exactly the actual file name.

Please note that on WIN32 platforms file name capitalization is ignored by the system, so
-copynames-case=exact will work just fine. This means that using this options on WIN32
will not change anything.

10

Debugging this: if you want to monitor the tool trying to locate copybooks and other file-
related activities, set environment variable SCT_DEBUG to 1.

Default: .cpy

® -COpynames-case

If a COPY file cannot be located, gives the character case the tool should use for the file
name in further open attempts: all upper case, all lower case, or exactly as coded.

Default: lower.
e -old-copy

Indicates that the program to be converted uses ANSI 68 format COPY statements. In this
format, the name before the word COPY was used to replace the name at the equivalent level
in the text file.

Default: Off.
e -irrev-inline

When the -irrev-inline option is Off (-no-irrev-inline) the lexical analyzer inserts COPY
and ENDCOPY tokens in the token stream indicating the beginning and end of copybook
code. With these tokens, the parser can place COPY statements on a Program Tree and
therefore it can output separate copybook files or place enter and exit copybook comments
in the COBOL file (controlled by the -gen-copy-dir and -gen-enter-exit-copy-comments
options).

However, certain Cobol structures involving copybooks cannot be parsed with the COPY
and ENDCOPY tokens in the token stream, because in general case, COPY and ENDCOPY
tokens are not part of the Cobol grammar. To parse these structures, or if you always want
the copybook code expanded inline, set the -irrev-inline option.

Default: Off.

e -inline-copy
If On, parse copybooks. If Off, ignore copybooks as if they were not found.
Default: On.

2.4.4 Messages and Extras

e -warnings
Display warning messages.
Default: On.

e -multi-undefd-errs

Indicates that an error message should be output for every use of an undefined name. When
-no-multi-undefd-errs (default) is set, only one error message is issued on the first use of
the undefined name.

Default: Off.

11

-resolve-use-def
Resolve use-definition links for named objects.
Default: On.

-same-para-data-name

-same-para-data-name=yes allows one name to be used both as paragraph-name and data-
name. -same-para-data-name=no disallows this behaviour as reuiqred by standards. -same-
para-data-name=dial specifies that Yes/No is determined by the dialect. Currently for MF
and [Cobol this property is set to Yes, and for all other dialects it is set to No.

Default: dial.

2.4.5 Length and Offset Computation

-leng-offs
Compute data item lengths and offsets.
Default: On.

-lo-stor-mode

Type of alignment (storage mode) used to compute length and offset of data items. If it is
byte, the binary items length can be any number of bytes from 1 to 8 and they can be aligned
on the byte boundary. If it is word, the binary items length can be 2, 4, or 8 bytes and they
are aligned on 2, 4, or 8-byte boundary. If storage mode is dial, then the actual storage mode
is determined by the dialect.

Default: dial.
-num-sign-trail-sep

Flag: Is Numeric Sign a Trailing Separate Character. -num-sign-trail-sep=no means No. -num-
sign-trail-sep=yes means Yes. -num-sign-trail-sep=dial leaves it to the dialect to determine
whether the answer is Yes or No. Currently only RM Cobol dialects have this option set to
Yes.

Default: dial.

-lo-pointer-size

Size of the POINTER data item.

Default: 4.

-lo-proc-pointer-size

Size of the PROCEDURE-POINTER data item.
Default: 4.

-lo-index-size

Size of the INDEX data item.

Default: 4.

12

e -lo-unfold-flex-arrays

If this option is On, then the size of table with DEPENDING ON is computed as differ-
ence between upper and lower bound on indices. If this option is Off, then size table with
DEPENDING ON is undefined.

Default: On.

2.5 PrettyPrinter

2.5.1 General Options

e -gen-src
Indicates whether the output source should be in SourcePrint format (-gen-src), which pre-
serves the format of all but the converted lines, or in PrettyPrint format (-no-gen-src) in
which source is fully reformatted (beautified) in a regular manner.

Default: Off.
e -gen-copy-dir

Indicates that copy files should be written to separate files, rather than being expanded
(inlined) in the main COBOL file, and defines the directory to which the output copy files
should be written.

If set to a null string (~gen-copy-dir="", the default), copy files are expanded inline in the
output file. Only valid if the -no-irrev-inline option is set.

Copybook name that is stored in the Program tree is appended to the directory name specified
in ~gen-copy-dir option to form full name of output copybook file. However, if copybook
name stored on the tree is absolute name (this happens if you specify absolute names in
-copylib-dir option), then only base file name derived from this absolute copybook name
is appended to output copybook directory name.

If youuse ”..” (parent directory) in directory name specified in -copylib-dir, then substrings
xxx/ ../ where xxx is arbitrary directory will be removed from the resulting copybook name,
because WIN32 systems do not accept ”..” in file name.

2.5.2 Indentation

e -gen-indent-step

When the tool outputs pretty-printed code it uses indentation to help the interpretation of
statements that are spread over multiple lines or have nested levels of logic (such as nested
IF statements). The -gen-indent-step option specifies the number of character positions by
which each successive indent is displaced from the previous indent.

Default: 2.
e -gen-max-indent

Defines the maximum column at which indented text will be started. Any text whose indent
would start at a column greater than this column is output with the indent starting at this
column.

Default: 40.

13

e -gen-tabs

When the Converter outputs pretty-printed code certain items, such as PICTURE clauses,
are aligned to tab columns. The -gen-tabs option specifies the tab column positions.

Currently tabs are used for data items and report section items:

Data items Tab
PICTURE \#4
REDEFINES \#4
USAGE \#6
OCCURS \#4
VALUE \#6
Report section items Tab
PICTURE \#3
SOURCE \#5
VALUE \#5

Default: 12,24,32,42,44,54.
e -gen-line-format

Generated line format. Can be: fixed for fixed format, free for free format, fsc-free for
Fujitsu free format, or var for variable format. See ~1ine-format option description for more
information on line formats.

Default: fixed.

e -gen-observe-ab-rules

If set to False, then disregard the Area A, Area B rules when generating converted code.
Ignored if gen-line-form is free.

Default: Off.

2.5.3 Printing out Comments

e -gen-print-comments
Comments from the input source are preserved in the output source.

Default: On.

e -gen-enter-exit-copy-comments

Indicates that the tool should place == Enter/Exit filename == comments before and after
copybook text that is expanded in the main output file. Only valid if the -no-irrev-inline
option is set.

Default: On.
e -gen-add-line-dirs

Generate FSC preprocessor LINE/FILE directives, so that FSC compiler and debugger report
errors and debug in terms of the source Cobol file, not in terms of the converted file.

Default: On.

14

2.5.4 Line Identification

e -gen-line-id-comments

Indicates that the tool should transfer characters held in columns 1-6 and 73-80 from the
input source to the output source. Effective only when -gen-src is On.

Default: On.

e -gen-73to80-fmt

Specify a string to be placed in columns 73 to 80. You can include the line number in the
string by including one of the following ”%” strings (a la C printf):

*

hd

output the line number using the minimum number of digits (i.e. one digit for the
numbers 1-9, two digits for the numbers 10 to 99, etc.),

%nd

use n digits for the line number (right aligned, space filled),

%-nd

left align the line number in n digits,

%0nd

zero fill a right aligned, n digit line number.

” 0

You can also substitute the letters 70" or ”x” for the letter ”d” in the above strings to output
the numbers in octal or hexadecimal.

Some sample formats:

* —gen-73to80-fmt="ABC)5d4"

In the first three lines the following would be inserted to columns 73 to 80:

ABC 1
ABC 2
ABC 3

-gen-73t080-fmt="%06dYZ"

In the first three lines the following would be inserted to columns 73 to 80:
000001YZ

000002YZ

000003YZ

Default: no format.

e -gen-73to80-start

Number from which to start the numbers placed in columns 73 to 80.

Default: 1.

e -gen-73to80-step

Amount by which the numbers placed in columns 73 to 80 are incremented from one line to
the next.

Default: 1.

15

2.6 Examples

2.6.1 Cbl-Beau example

To beautify an OSVS Cobol program that is named progll.cbl type:
cbl-beau -lang=osvs progll.cbl

File progl1.scc is created. It contains the beautified program.

2.6.2 Ibm2Fsc example

To convert Cobol program z80.cbl written in VS Cobol II to Fujitsu Cobol (the source program
has comments in PROGRAM-ID entry, copy libraries are in directories ”copylib” and ”include”,
copylib files suffix set to ”.cfx”), type the following:

ibm2fsc z80.cbl -lang=vsii -progid-comment -copylib-dir=copylib;include -copylib-sfx=.cfx

2.7 Return Codes

Tools return integer Return Codes that can be checked in MS DOS batch (errorlevel) or UNIX
shell files.

RetCode Meaning

0 Conversion completed with no errors equal to
or greater than the bailout level.
1 Bailout because of a warning error
(only occurs if -bailout-level = warnings)
2 Bailout because of a non-terminal parser error
(only occurs if -bailout-level = errors)
3 Bailout because of a severe parser error
(occurs for any -bailout-level setting)
5 No action taken (e.g. only the option list was displayed)
10 Cannot create an output file
11 Cannot open an input file
12 Cannot remove a file (client-server mode only)
13 Cannot start a file (client-server mode only)
20 Option not available in installed package
21 Incorrect command line option specified
22 Incorrect dialect specified in the -lang or -lang2 option
23 Stack or array overflow
24 Error while trying to check license
Other
Values Internal error - contact technical support.

16

Chapter 3

Cobol Source Tools

3.1 Cobol Beautifier

cbl-beau beautifies Cobol code and performs other important code maintenance tasks.

Beautification is controlled by the general PrettyPrinter tool options. Optional code mainte-
nance tasks are invoked by their respective options.

By default the converted file has extension .scc.

3.1.1 General Options

e -add-value-clause
Add VALUE clause to WORKING-STORAGE section data items that do not have VALUE clause but
have PIC clause.

Having VALUE clause for every data item in WORKING-STORAGE section is considered im-
portant, it helps to increase program portability and may prevent some unpleasant core-
dumps/GPFs.

Default: Off.

e -norm-dd-levels

Normalize data item level numbers so that all data items at one logical level of record hierarchy
have the same level number.

Some Cobol dialects (IBM OSVS, MF) allow level numerbs to be different for items belonging
to the same hierarchy level. Transformation invoked by this option fixes this non-standard
behaviour.

Default: Off.

e -add-end-stmts
Add END-IF, END-SEARCH, END-EVALUATE, END-PERFORM closing statements.

Most Cobol compilers can guess where the composite statement should end, so you are not
required to have the closing END-* statements.

However it is considered a good programming style to have all composite statements terminat-
ing END-* statements coded explicitly. Transformation invoked by this option automatically
adds END-* closing statements.

17

Default: Off.

3.1.2 Renumber Sections Options

e -section-name-fmt
Section name format, looks like “t1%dt2%st3”.

If this option is specified, then all definitions and uses of section names are renumbered. The
option string specifies C-printf-like format of the new name assigned to each section.

First data item in this format is ”%d”. It is replaced with section Counter. The counter is
increased by the counter step for every new section that passes through the tool.

Second data item in this format is ”%s”. It is replaced with the old (before renaming) section
name.

t1, t2 and t3 is any text not containing percent sign. Modified forms of ”%d” such as ”%04d”
be used.

Examplel: ~section-name-fmt="%04d-%s". Add 4-digit (leading zeros) numeric prefix to the
section name.

Example2: -section-name-fmt="8%d-%s". Add character ’S’ followed by section counter to
the section name.

Default: no section renumbering.

e -section-name-start
Start value for number in section name.

Default: 1.

e -section-name-step
Step for number in section name.

Default: 1.

3.1.3 Renumber Paragraph Options

e -para-name-fmt
Paragraph name format.
Formatting rules are the same as for section names.
Default: no renumbering.
® -para-name-start
Start value for number in paragraph name.
Default: 1.
e -para-name-step
Step for number in paragraph name.
Default: 1.

18

3.1.4 Renumber Data Items (Record Description) Options

e -data-name-fmt
Data name format.
Formatting rules are the same as for section names.

Default: no renumbering.

e -data-name-start
Start value for number in data name.

Default: 1.

e -data-name-step
Step for number in data name.
Default: 1.

3.2 Cobol Grep

cbl-grep takes all the files specified by the user, parses them into Cobol Program Tree, searches
the Program Tree for nodes that satisfy user-specified query and finally print out the source lines
that correspond to the found tree nodes.

Query is written in CobolTransformer Query Language (QL). This language can also be called
”SQL for Program Trees”. Reference manual for Query Language (QL) is available in the ”Query
Language” Chapter.

Typical uses:

cbl-grep -g=query filel.cbl file2.cbl file3.cbl ...
cbl-grep —qf=query-file:query filel.cbl file2.cbl file3.cbl ...

3.2.1 Options

*q
Specify the query directly.

Do not forget to put query text in quotes if it contains spaces or special characters. Otherwise
you shell will break it into several options and cbl-grep will not be able to parse it.

Default: no direct query specified.
e qf
Read the query from the specified file.

If string specifed in -qf option does not have colon ’:’; then this string is file name and this
file contains exatcly one query.

If -gf option string contains colon ’:’ such as in aaa:bbb then text beforethe colon (aaa) is
treated as the file name and the text after the colon (bbb) is treated as the name of the query
in the file. In this case every query in the file aaa must start with QUERY query-name line.

Default: do not read query from file.

19

e -print-query
Print query exactly as the query parser sees it. Use this option to verify that cbl-grep

understands your query.
Default: Off.

e -print-err-pos
If query is incorrect, indicate position of error in the query.
Default: On.

e -print-tree

Print subtree that starts from the node that matches query.
Default: Off.

e -print-src

Print source line that corresponds to the node that matches query. If Off, then print only
coordinates of the found nodes in the source.

Default: On.

3.2.2 Query Language Reference

Introduction

When reengineering program in computer language such as Cobol,
we often need to locate certain units of program that satisfy
criteria that we determine.

Example 1: For instance, we may be interested in seeing all
CALL and CHAIN statements for a given program, because these
statements show what external programs are called from this program.

In QL this query is written as: E.0P==STMT_CALL OR E.0P==STMT_CHAIN
or even (simplified version): STMT_CALL OR STMT_CHAIN

Example 2: Or we may need to find all data item declarations that
belong to FILE SECTION or LINKAGE SECTION and that have VALUE clause.
It would be useful if we are migrating from the Cobol compiler

that allows VALUE clauses for such data items but treats them

as documentary to the Cobol compiler that does not allow

VALUE clauses in such data items at all.

In QL this would be:

E.OP=DECL_DD_ENTRY AND

(E.ISDESCOF (SECTION_WORKING_STORAGE) OR
E.ISDESCOF (SECTION_LINKAGE)) AND
E.ARG(DD_VALUE) != NULL

20

Query language described in this document is used
to formulate such search criteria.
Query is a predicate calculated on Program Tree node:

logical_value = Query (e)
So Query receives Cobol Program Tree node e as an argument and

it returns True if node e satisfies condition encoded in the Query.
The Query returns False if condition is not satisfied by e.

BNF used for QL syntax description

We use Backus Naur Form (BNF) to describe syntax
of Query Language (QL).

The Query consists of tokens.
Non-terminal tokens appear as all lower-case words in BNF rules.

Terminal tokens appear as all upper-case words in BNF rules and
they are enclosed in single quotes like this one: ’NOT’.

Words in query that match terminals in case-insensitive way,
that is, instead of ’NOT’ one can use ’not’, ’NoT’, ’NOt’ and so on.

Query Library File

Queries contain a number of characters that have

special meaning in 0S shells (space , = ! etc).
Therefore it makes sense to have queries loaded from files
in addition to specifying them in command line.

Since most queries are relatively short,
we can have more than one query into a file.
It also improves query management.

So, several queries may be put together in a library file.
The queries are not compiled in the library,

they appear in the source form.

In the library of queries every query must be named.

21

However, if file has only one query, query name may be skipped.

Every query in a query library file has header line that has format:
QUERY query-name
Here the word QUERY must be the first word on the line.

The body of the query starts on the line that immediately follows
the query header line and ends on the line that immediately
precedes the next query header line or end of file.

The individual query in a library is referenced by
query-locator described below.

Query Lexical Rules

Query lines that starts with characters ’#’ or ’*’ are
comment lines that are ignored.

If two slashes ’//’ are found in the line, these slashes and
text after them (till the end of line)
is a comment which is ignored.

White space characters ’ ’, ’\n’, ’\r’, ’\t’ are used
as delimiters for tokens. That is, token is a
sequence of non-whitespace characters delimited by
whitespace characters.

However, when it is possible to separate tokens,
whitespace between them is not required.

Any combination of name or number or string token

and any of miscellaneous token is separatable.

Any other combination (name and name, name and number,
number and number, etc) must be separated by whitespace.

The following tokens are used:

name: sequence of characters ’A’-’Z’, ’a’-’z’, ’0’-’9’, =’
where first character is letter.

int-const: sequence of characters ’0’-’9’°
represents integer constant.

str-const: sequence of any characters enclosed

in single quotes ’ or double quotes "
with following translations inside:

22

\ll -> n

\7 ->

?>? => 7 if string starts with ’
"> " if string starts with "
represents string constant

Miscellaneous tokens:
«c) = .
= > >= < <= -
+ - %

represent various operations

Names of Things

Meaning of the name-like terminals:

** query-locator

The individual query in a library is referenced by
query-locator string that has the following format:

file-name:query-name

Here file-name is a regular UNIX/MSWIN file name that can

contain characters ’a’-’z’, ’A’-’Z’, °0°-°9°, 2.7, \?,6 /2 -2,

It also may contain character ’:’ in the 2nd or 3rd column of file-name
if file-name starts with one of the following

[a-zA-Z]\:

[a-zA-Z]:

that is, when file-name starts with WIN32 drive designator.

It means that we disallow file—-name to be
one—-character name with no extension.

Examples of correct query-locators:
cobc\gry.lib:qry-member
d:\cobolc\sct\QUERY-EXAMPLE.qry:my_query
/volume/dir/qrys/my-qry

** oper
Oper is a name-like token that represents symbolic Operation Name.

Every node in Program Tree has an operation that identifies the type of node.
List of all Program Tree operations is available from

23

the CobolTransformer Program Tree Manual.

Operation name is case-insensitive.

** clause-index

Clause-index is a name-like or integer-like token
that represents index of child in the positional Program Tree
node.

Children of every node in Program Tree are numbered from 1 to N,
where N is the number of children in the node.

For positional nodes every child represents a clause,
so it is convenient to have symbolic names for this clauses.
Symbolic clause-index is such a name.

The list of symbolic clause names is available from
the CobolTransformer Program Tree Manual.

Integer child index can be used instead of symbolic child index
for positional nodes with unnamed children or

for children of list nodes which are ’naturally’ unnamed.

Clause name is case-insensitive.

** node-var

Node-var is a name-like token that represents a name of node variable.
Each node variable must be explicitly declared before its use.

** value-var

Value-var is a name-like token that represents a name of value variable.
Each value variable must be explicitly declared as
either string variable or integer variable.

Therefore, there are three distinct types of variables in QL:
- Node Variable: points to Program Tree nodes,

- Integer Value Variable: holds integer value,

- String Value Variable: holds string value.

Individual Query

24

query
node
value

query:

-- query
—-- expression that points to a Program Tree node
-- integer or string value (constant or extracted from a node)

’TRUE’
’FALSE’

// node reference points to non-existing node (node reference is NULL) or
// pointed to node is NULL node.
node ’==’ NULL

// node reference points to existing node (node reference is not NULL) and
// pointed to node is not NULL node.

node ’!=’ NULL
// equivalent to: node !'= NULL
node

// equivalent to: node.0P == oper
node ’==’ oper

// equivalent to: node.0P != oper
node ’!=’ oper

// Return True if 1st and 2nd node expressions point to the same node
node ’==’ node

// Return True if 1st and 2nd node expressions point to different nodes
node ’!=’ node

// return True if node is a descendant of node with operation oper
node ’.’ ’ISDESCOF’ ’(’ oper ’)’

// equivalent to: E.ISDESCOF (oper)
>ISDESCOF’ ’(’ oper ’)’

// Return True if this node originates from Cobol source.
// Return False if this node was generated (does not come from the source).

node ’.’ FROMSRC

// Return True if 1st operation is equal to the 2nd operation
oper ’==’ oper

// Return True if 1st operation is not equal to the 2nd operation
oper ’!=’ oper

// equivalent to: E.OP == oper

25

oper

// is 1st value equal to 2nd value, case-sensitive strings and integers
value ’==’ value

// is 1st value equal to 2nd value, case-insensitive strings
value ’==7’ value

// equivalent to: value ==" value
value ’7’ value

// is 1st value not equal to 2nd value, case-sensitive strings and integers
value ’!=’ wvalue

// is 1st value not equal to 2nd value, case-insensitive strings
value ’!="’ value

// is 1st value >= 2nd value, case-sensitive strings and integers
value ’>=’ value

// is 1st value >= 2nd value, case-insensitive strings
value ’>="’ value

// is 1st value > 2nd value, case-sensitive strings and integers
value ’>’ value

// is 1st value > 2nd value, case-insensitive strings
value ’>7’ value

// is 1st value <= than 2nd value, case-sensitive strings and integers
value ’<=’ value

// is 1st value <= than 2nd value, case-insensitive strings
value ’<=7’ value

// is 1st value < 2nd value, case-sensitive strings and integers
value ’<’ value

// is 1st value < 2nd value, case-insensitive strings
value ’<™’ value

// does 1st value match pattern from the 2nd value
value ’LIKE’ value

// Return True if query is False.

// Otherwise return False.
’NOT’ query

26

| >1> query

// If 1st query is False, return False.

// Otherwise evaluate 2nd query and return its value.
| query ’AND’ query
| query ’&&’ query

// If 1st query is True, return True.

// Otherwise evaluate 2nd query and return its value.
| query ’OR’ query
| query ’||’ query

// return value of query
|)(J query ;)7

// call query specified by QUERY_LOCATOR with arg node
| query-locator ’(’ node ’)’

Query takes in the main variable which is reference to
Program Tree node called E. Based on node E, Query must
compute logical True/False value and return it.

Query may refer to variables other than E. These variables:
- May be declared in the query.

Then they are called Query Variables.
- May be declared outside of query.

Then they are called Free Variables.

Main variable, Query Variables and Free Variables all point to
Program Tree nodes. References to them appear as non-terminal
’node’ in Query BNF.

When Query is evaluated, it receives values of all variables,
including main variable and free variables.
Query variables are assigned value inside the query.

Comparison operators and assignment operators:
We follow C, C++ and Java tradition and use
’=’ as assignment operator and

’==’ as equal-to comparison operator.

LIKE operator matches its 1st argument against the pattern taken from

the 2nd arg. The RX package is used for pattern matching, and format
of pattern string is described there.

27

Empty string query is equivalent to ’TRUE’ query, that is,
to query that returns True for any Program Node presented to it.

node: // Return value of the main node variable
7EJ

// Return the Root variable.
// This is a root of the Program Tree in which search occurs.
| ’ROOT’

// Return value of the previously declared node variable
| node-var

// assign node’s value to the previously declared variable var-node
| node-var ’=’ node

// declare node variable var-node and assign node’s value to it
| *NODE’ node-var ’=’ node

// return parent of the node
| node ’.’ ’PARENT’

// equivalent to: E.PARENT
| ’PARENT’

// return child/argument number clause-index of the node
| node ’.’ ’ARG’ >(’ clause-index ’)’
| node ’.° ’CHILD’ ’(’ clause-index ’)’

// equivalent to: node.ARG(CLAUSE_INDEX_CONSTANT)
| node ’.’ CLAUSE_INDEX_CONSTANT

// equivalent to: E.ARG(clause-index)
| ’ARG’ >(’ clause-index ’)’
| *CHILD’ °(’ clause-index ’)’

// Find 1st occurrence of operation oper among arguments of node.
// If not found, return NULL.
| node ’.’ ’FIND’ ’(’ oper ’)’

// equivalent to: E.FIND(oper)
| *FIND’ ’(’ oper ’)’

// Return Linked-to node for node thatfor which HasLink() is True.
// Returns UNDEFINED for all other nodes.

28

// Returns NULL if object has no definition.
| node ’.’ ’LINK’

// Enclosing statement for the node
| node ’.’ ENCL-STMT

// Enclosing section for the node
| node ’.’ ENCL-SECTION

b

Non-terminal node represents reference (pointer) to Program Tree node.
These pointers may have NULL values for different reasons.

For instance, when data item declaration does not have a certain clause,
the child that is responsible for this clause is NULL.

If attempt is made to dereference NULL node pointer

(for instance, in node.PARENT operation),

the dereferencing does not occur.

If node pointer is expected then NULL pointer is returned.

E represents main variable of a query.
Query Variables that are declared in the query
are visible only in this query.

If variable needs to be visible outside of the query
(that is, in Scripting Language), it must be declared in SL.

value: // Integer constant
| int-const

// String constant
| str-comnst

// Image of the value stored in the node (string)
| node ’.’ ’IMAGE’

// Normalized Image of the value stored in the node (string)
| node ’.’ ’VALUE’

// Integer value of the node (valid only for INT_NUM_CONST node)
| node ’.’ ’INTVALUE’

// Number of arguments/children of the node
| node ’.’ ’ARGNO’

// Return value of integer/string variable var-value

29

var-value

// Assign value to previously declared integer/string variable var-value
var-value ’=’ value

// Declare integer variable var-value and assign value to it
INT var-value ’=’ value

// Declare string variable var-value and assign value to it
STR var-value ’=’ value

// Return length of string value
value ’.’ ’LENGTH’

// Return substring of string value that starts

// at integer position value-1 (first character has position 0) and
// has length of integer value-2

value ’.’ ’SUBSTR’ ’(’ value-1 ’,’ value-2 ’)’

// Return position of 1st occurrence of string value-1 in value.
// First position in the string has number O.
value ’.’ ’pos’ ’(’ value-1 7)’

// Return position of i-th occurrence of string value-1 in value.
// First position in the string has number O.

value ’.’ ’pos’ ’(’ value-1 ’,” i ’)’

// add two integers or concatenate two strings
value ’+’ value

// subtract two integers
value ’-’ value

// multiply two integers
value ’*’ value

// divide two integers
value DIV value

// compute remainder of division for two integers
value MOD value

// lower-case the string
value ’.’ LOWER

// upper-case the string
value ’.’ UPPER

30

If attempt is made to dereference NULL node pointer

(for instance, in node.OP operation), the dereferencing does not occur.
If operation or value are expected to be returned as a result

of dereferencing (as in node.OP), special UNDEFINED value is returned.

The UNDEFINED value

value == UNDEFINED
value != UNDEFINED
value > UNDEFINED
value >= UNDEFINED
value < UNDEFINED
value <= UNDEFINED
value + UNDEFINED
value - UNDEFINED
value * UNDEFINED
value DIV UNDEFINED
value MOD UNDEFINED
value && UNDEFINED
value || UNDEFINED
! UNDEFINED

behaves by the following rules:
FALSE
TRUE
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
value
UNDEFINED

Operation priorities from highest to lowest:

’FUNC’

* / DIV MOD

+ -

comparison opers

operations are computed left to right, that is

a*xb xc

= (a * b)

* C

Developer API

If you purchased a complete CobolTransformer distribution,
see file sct/query.h for detailed instructions
on how to use Developer API for Query Language.

Not implemented

31

As of Version 3.2.1 of QL, the following constructs are not implemented:

*

Query: QUERY_LOCATOR ’(’ node ’)’
* Query Variables

* Free Variables

3.2.3 Query Language Examples

#

This is Query Library file that contains examples of useful queries.
These queries are used in conversion tools based on CobolTransformer.
#

#

Find TRANSFORM statements

#

Query TransformStatement
stmt_transform

#
Find declaration of data item that has VALUE clause
#
Query DDhasValueClause
DECL_DD_ENTRY and
arg(DD_VALUE) != NULL

#
Find data item declaration with no PICTURE clause
#
Query DDnoPICclausel
e.op==DECL_DD_ENTRY and
e.arg(DD_PICTURE) == NULL

Query DDnoPICclause2
DECL_DD_ENTRY and
Child(DD_PICTURE) == NULL

#

Find PLUS/MINUS operations used in table references in the following way:
TABLE (index - +1) or TABLE (index - -1) or

TABLE (index + +1) or TABLE (index + -1)

#

Query TableRefIndexPlusMinusOrMinusPlus

32

(OP_ADD_IX or OP_SUB_IX) and
parent==SUBSCRIPT_LIST and
parent.parent==TABLE_ELT and
e.ArgNo==2

#
Find File Declaration (FD) with REPORT clause and
no clause that specifies record size (RECORD CONTAINS or RECORD IS VARYING)
#
Query FDwithReportClauseAndWithNoRecordContains
DECL_FD and
e.Arg(FDH_ENTRY) . Arg (FD_REPORT) and
e.FDH_ENTRY.FD_RECORD_SIZE == null

#

Find data item declarations that have VALUE clause and
belong to WORKING-STORAGE or LINKAGE sectioms.

#

Query DDhasValueInWorkingOrLinkageSection
E.0OP==DECL_DD_ENTRY AND

(E.ISDESCOF (SECTION_WORKING_STORAGE) OR

E.ISDESCOF (SECTION_LINKAGE)) AND

E.ARG(DD_VALUE) != NULL

#
Find all code which affects data item "WSS",
either directly or thru REDEFINES.
See the power of QL!
#
Query WhatAffectsDataltem
((e==NAMED_OBJ_DEF && e.value™"WSS" && // Definition
// Save section flag: only one of assignment
// will be executed.
((e.isdescof (section_working_storage) &% int sect=1) ||
(e.isdescof (section_linkage) && int sect=2)
)
&&
// save beginning and end of definition
int base=e.parent.dd_offset_global.intvalue &&
int len=base+e.parent.arg(dd_length) .intvalue
)
I
(e==NAMED_OBJ_USE && // Usage
// In the same section?
((e.def.isdescof (section_working_storage) && sect==1) ||
(e.def.isdescof (section_linkage) && sect==2)
) &&

33

// Overloaded?
(int head=e.link.parent.dd_offset_global.intvalue and
int tail=head+e.link.parent.dd_length.intvalue &&
((head>=base && head<=len) || (tail>=base && tail<=len))
) &&
// Does this USE belong to receiving part of
// MOVE, ADD, SUB, MUL, DIV?
(e.isdescof(ex_list) || e.isdescof(ex_ident_list) ||
e.isdescof (ex_arith_div_remainder)

3.3 Cobol Reporter

cbl-report produces reports that summarize important properties of a Cobol program.

This tool only analyzes a Cobol program, it does not convert it.

3.3.1 Options

e -long-stat

Produce long program statistics that includes:

* Number of lines in the program, Lines of code (LOC), number of tokens. All these counts
include inlined copybooks.

* Program-IDs and ENTRYSs defined in this file.

* Number of sections, paragraphs, sentences and statements in the program.
* Number of File I0 and Sort-Merge subsystem statements used.

* Number of SQL and CICS subsystem statements used.

* Number of Report Writer subsystem statements used.

* Number of Accept/Display ANSI and Accept/Display Screen (ADIS) subsystem
statements used.

* List of all programs called from this file, with count of calls for each called program.
* List of all EXEC subsystems called from this file, with count of calls for each EXEC.

* List of all copybooks used in this file, with count of use for each copybook. Number of
COPY REPLACING uses.

Default: On.

e -mem-offsets

Print data item length and offset information for all data items in WORKING-STORAGE,
FILE, and LINKAGE sections that includes:

*x Level of the data item.

* Name of the data item.

34

*

*

PICture clause for the data item.

Category of the data item: A for alphabetic, N for numeric, AN for alpha-numeric, AE
for alpha-numeric edited, NE for numeric edited, EF for external float, B for bit, JP for
national, JE for national edited.

Effective Usage for the data item.

7 if the data item is Synchronized.

Offset of the data item from the 01-level data item start.
Length of the data item in bytes.

Offset of the data item from the enclosing section start.

For 78-level constants their computed value is displayed.
Default: On.

3.4 Transformation Runner

runtrans loads transformation from file and runs it on specified files.

3.4.1 Options

o -t

Name of the *.SCT file that contains transformation to be run.

Default: must always be present.

35

Chapter 4

Cobol Source Converters

4.1 IBM Cobol to Fujitsu Cobol converter

ibm2fsc converts IBM Cobol dialects OSVS, VS/II, SAA, DOSVS to Fujitsu Cobol.
By default the converted file has extension ”.fsc”.

The complete list of conversions performed can be found in the file SPEC. txt.

4.1.1 Options

e -add-value-clause

Add VALUE clauses to WORKING_STORAGE SECTION data items that do not have
VALUE clause and have PIC clause.

Default: Off.

® -comment-execs
Comment out EXEC ... END-EXEC statements.
Default: Off.

e -expand-abbrev-conds
Expand abbreviated combined conditions.
Default: Off.

e -set-max-report-len
User defined maximum report-record length.
Default: -1/none.

e -fsc-options
FSC compiler options.
Default: ”SRF (FIX),BINARY (BYTE)".

e -ibm-printer-files

List option: -IBM-printer-files=|[printer-file-name,...|

36

4.2

This will indicate the names of the files that should be handled as IBM printer files using the
filenames defined in the SELECT statement.

Default: empty list.
-ibm-printer-char
Sets the action to be taken for IBM printer files

Actions are:

* adv
* noadv

* none

Micro Focus Cobol to Fujitsu Cobol converter

mf2fsc converts Micro Focus Cobol, Microsoft Cobol and Ryan McFarland Cobol to Fujitsu Cobol.

By default the converted file has extension ”.fsc”.

The complete list of conversions performed can be found in the file SPEC. txt.

4.2.1 Options

-add-value-clause

Add VALUE clauses to WORKING_STORAGE SECTION data items that do not have
VALUE clause and have PIC clause.

Default: Off.

-convert-78s

If On, convert 78-level constants using one of the methods specified below. If Off, do not
convert 78-level constants.

Default: On.
-propagate-78s

If On, Propagate 78-level constants. If Off, generate REPLACE statement that defines 78-level
constants.

Default: Off.

-iostatus-conv-only

Perform 10 status conversion only, turn off all other transformations.
Default: Off.

-iostatus-conv

Perform IO status conversion, in addition to other transformations.
Default: Off.

37

e -add-end-stmts
Add END-IF, END-SEARCH, END-EVALUATE, END-PERFORM closing statements.

Most Cobol compilers can guess where the composite statement should end, so you are not
required to have the closing END-* statements.

However it is considered a good programming style to have all composite statements terminat-
ing END-* statements coded explicitly. Transformation invoked by this option automatically
adds END-* closing statements.

Default: Off.
e -fsc-options
FSC compiler options.
Default: ”SRF (FIX),BINARY (BYTE)”.

4.2.2 Files Included

e mf.kbd

If you use ACCEPT statement with SCREEN SECTION and you want ACCEPT statement
input to be terminated by function keys F10, ESCAPE and you want function keys to generate
the same codes as in MF, then you need to specify to FSC run-time keyboard mapping
contained in file mf . kbd.

When you start EXE file of your application compiled with FSC, RunTime Environment
Setup dialogue appears. Put string @BR_SCR_KEYDEFFILE=mf . kbd into Environment Variables
Information field and push Set and Save buttons. This informs FSC runtime that keyboard
mapping from mf .kbd should be used with this application.

e translio.cbl

If your program uses File IO status codes and the codes that you use are different for your
original compiler and FSC Cobol97 then use option -iostatus-conv, so that for every File
IO statement mf2fsc generates call to TRANSLIO routine that is contained in enclosed file
translio.cbl.

This call is added after the File IO statement and its goal is to convert File IO status from
your system convention to FSC convention.

You may want to customize this file with 1O status converion that are appropriate for your
original system.

The included versino of file translates MS Cobol status codes to FSC Cobol status codes.

4.3 1ICobol to Fujitsu Cobol converter

i2fsc converts ICobol to Fujitsu Cobol.
By default the converted file has extension ”.fsc”.

The complete list of conversions performed can be found in the Uses’s Guide.

38

4.3.1 Options

-add-end-stmts
Add END-IF, END-SEARCH, END-EVALUATE, END-PERFORM closing statements.

Most Cobol compilers can guess where the composite statement should end, so you are not
required to have the closing END-* statements.

However it is considered a good programming style to have all composite statements terminat-
ing END-* statements coded explicitly. Transformation invoked by this option automatically
adds END-* closing statements.

Default: Off.
-pic9toX-only

Specify that the only transformation to be performed is conversion of binary data items with
PIC 9(n) to PIC X(approx n/2).

Used to convert copy libraries.
Default: Off.

-ebcdic-sign-values
Switch the use of the ICOBOL sign byte values for the converted program.

Used to emulate the following ICobol feature: for signed display numeric items with included
signs (i.e. not SIGN SEPARATE) ICOBOL sets the sign-carrying byte to the ASCII value
for the character that would have been set in an IBM mainframe EBCDIC system.

Default: On.
-initialize-tally-item
Explicitly initialize tally-items to zero before INSPECT statements.

ICOBOL (compiled for ANSI 74 - common with HDS) initializes tally-item to zero (contrary
to the ANSI standard). Fujitsu COBOL complies with the standard and does not initialize
tally-item.

Default: On.

-printer-queue-name

Specify name of the data item that will be used to store the printer name.
Used to convert PRINTER files with PRINTER-PATH specified.

Default: ”PRINTQUE-PRINTER-NAME”.

-nx-xd-substitute

Define an extension to be substituted for ”.nx” and ”.xd” in ##F searches.
Default: "dat”.

-nxxd-warning

Issue warning when .NX or .XD literals are found.
Default: On.

39

e -print-file-lengths
List option: -print-file-lengths=|[print-file-name,length-switch-name,]...

This will indicate that the record length for print-fileename is contained in the data item
length-switch-name.

Print-file-name should be the name of the file in the COBOL program. Length-switch-name
should be a numeric item (at least PIC 9(3)) within the program.

Default: "PRINT-RECORD-LENGTH” variable to be used for all files.

4.4 Year 2000 Window Fix converter

y2k-fix fixes Year 2000 problem using Windowing approach.

Y2K-FIX adds windowing logic to a Cobol program. It parses the specified Cobol source file
and produces a file with suffix ”.yfx” that contains the fixed program.

Specifically, if a comparison operation >, >=, <, <= arguments are such that one of them is
data-item that contains date, then both arguments of this comparison operation are replaced with
temporary data-items, which are assigned Y2K-expanded date values.

Statements that compute expanded values are inserted before the statement that contains this
comparison operation.

By default the converted file has extension ”.yfx”.

4.4.1 Options

e -date-pic

If you specify this option, all data-items whose PICTURE is equal to the specified picture
string, will be considered data-items that contain date.

Example: y2k-fix -date-pic=9(6) y2k.cbl

Here file y2k.cbl is parsed and analyzed. File y2k.yfx is created that contains the fixed
program.

Note: in many shells you need to enclose 9(6) in quotes like this: "9(6)". This is because (
and) have special meaning in many shells,, especially in UNIX shells.

Default: none.
o -date-file

If you specify this option, all data-items whose full names are listed in the specified file, are
considered to be data-tems that contain dates.

Example: put a list of date data-items into file y2k.dates:

TRAN-SETTL-DATE OF TRAN-DATA OF TRAN-POST OF TRAN
TRAN-TRADE-DATE OF TRAN-DATA OF TRAN-POST OF TRAN
TRAN-REG-DATE OF TRAN-DATA OF TRAN-POST OF TRAN
W-START-DATE OF TRAN

Command line: y2k-fix -date-file=y2k.dates y2k.cbl

Default: none.

40

Chapter 5

Cobol Data File Converters

5.1 Cobol File Descriptor Extractor

cb12fdd extracts File Descriptor data from a Cobol program and puts it into RDD and FDD files.
These files contain machine-readable record descriptors that can be used by our File Access Library
to read Cobol VSAM data files generated by many Cobol systems.

RDD file (stands for Record Descriptor Data) fully describes format of the Cobol file record.
This data is taken from the record descriptor contained in FD for a file.

FDD file (stands for File Descriptor Data) fully describes file data such as file organization,
access method and so on. This data is taken from FD and SELECT statements for a file.

RDD and FDD files are text files but they are easily readable by a computer program. FDD
file contains data taken both from SELECT and FD statements for a file.

cbl2fdd creates and writes RDD and FDD files for each FD in a source program. For each FD it
creates one FDD and one or more RDD files. One RDD file is created for every 01 record layout
present in FD for a file. Names of these files consist of file name taken from FD and .rdd or .fdd
extension.

cbl2fdd accepts most of the standard command-line parsing options.

5.1.1 Options

e -expand-tables
Create a separate DATA line for each element of Cobol table in a record.
Default: On.

e -out-file

If this options is set, output all RDD descriptors to the file whose name is equal to the file
name base specified here plus ”.RDD” extension, and output all FDD descriptors to the file
whose name is equal to the file name base specified here plus ”.FDD” extension.

If this option is not set, output FD/DD descriptor for every FD/DD specified below to files
whose names are equal to FD/DD name plus ”.RDD” or ”.FDD” extension.

Default: not set.

o for-files

41

If this option is set to list of files, output file descriptors for files specified in this list.

If this options is not set and -for-files options is not set, output file descriptors for every
file declared in a program.

Default: not set.

o -for-data-tems
If this option is set to list of names, output record descriptors for data items specified in this
list.
Data items are located by their first name. Since there can be many data items with the same

file name, we write out data item descriptor to RDD file whose name is derived from the fully
qualified name of the data item.

If it is not set, do not output data item descriptors.
Default: not set.
e -group-items

If On, descriptors for group (non-elementary) data items will appear in RDD file. If
commented, descriptors for group (non-elementary) data items will appear in RDD file, but
corresponding DATA strings will be commented out. Remember that group data items cannot
be converted to C++ types, they can only be printed in hexadecimal format.

Default: off.

5.1.2 FDD: File Descriptor Data

This document describes format of FDD file.

FDD file describes the Cobol data file.
It contains all data that is needed to read the file.

FDD file usually has *.FDD extension.

FDD file format is simple and
it is easily readable by computer programs.

FDD file consists of lines.
Line can be of any length.
There is no line continuation character,
so lines cannot be broken.

Lines that start with ’#’ or ’%’ or ’/’
are comment lines and as such they are ignored.

Non-comment lines consist of fields.
Fields are separated by one or more spaces (’ ’) or TABs (’\t’).

Each field consists of non-space characters.

First field of a line is a keyword that defines

42

the interpretation of the remainder of the line.
Every keyword starts a command.
All commands take exactly one line.

The following commands are available:

* FILE <cobol-file-name>
Specifies file-name as it appears in the Cobol
program in FD and SELECT statements.
This is here for informational purposes only.

* RDDFILE <file-name>
Specifies name of the RDD file that describes structure of the file record.
If <file-name> contains spaces or special characters,
it must be enclosed in ’ or " quotes.
If <file—name> is not absolute, then it is relative
to the directory of FDD file that contains this RDDFILE command.
You may have several RDD files defined for one data record.

* DATAFILE <file-name>
Specifies name of the Cobol data file that contains the actual data.
If <file-name> contains spaces or special characters,
it must be enclosed in ’ or " quotes.
If <file—name> is not absolute, then it is relative
to the directory of FDD file that contains this DATAFILE command.
Exactly one DATAFILE command must be present.

* ORGANIZATION <org-type>
Specifies data file organization.
<org-type> can be one of the following:

SEQUENTTIAL ORGANIZATION IS SEQUENTIAL
LINESEQUENTIAL ORGANIZATION IS LINE SEQUENTIAL
BINARYSEQUENTIAL ORGANIZATION IS BINARY SEQUENTIAL
INDEXED ORGANIZATION IS INDEXED

RELATIVE ORGANIZATION IS RELATIVE

* ACCESSMODE <am-type>
Specifies data file access mode.
<am-type> can be one of the following:

SEQUENTTIAL ACCESS MODE IS SEQUENTIAL
DYNAMIC ACCESS MODE IS DYNAMIC
RANDOM ACCESS MODE IS RANDOM

* FILEFORMAT <format-type>
Specifies vendor-specific physical format of the data file.
The following phycal formats are available:
DEFAULTFILEFORMAT default format for the program that uses FDD file.

43

If no file format is specified,
then DEFAULTFILEFORMAT is assumed.

FSC Fujitsu data file

MF Micro Focus data file
ACU AcuCobol data file

RM Ryan McFarland data file

5.1.3 RDD: Record Descriptor Data

This document describes format of RDD file.

RDD file describes the exact format of
the Cobol data record (01 or FD record description).

RDD file usually has *.RDD extension.

RDD file format is simple and
it is easily readable by computer programs.

RDD file consists of lines.
Line can be of any length.
There is no line continuation character,
so lines cannot be broken.

Lines that start with ’#’ or ’%’ or ’/’
are comment lines and as such they are ignored.

Non-comment lines consist of fields.
Fields are separated by one or more spaces (> ’) or TABs (’\t’).
Each field consists of non-space characters.

If a particular field has no value (is empty),
it is represented by ’Q’ character.

First field of a line is a keyword that defines
the interpretation of the remainder of the line.

The following line types are available:

* DATA line defines data item.

This is the most popular line in RDD file.

DATA <log-level> <phys—level> <name> <category>
<usage> <sign> <occurs-from> <occurs-to>

<offset> <bit-offset> <length> <picture> [<date-picture>]
(all these <> items appear on one line in RDD file)

44

<log-level> is logical level of the item in the hierarchy of data items.
Starts at O and is incremented by 1. Can be 0, 1, 2, 3, 4,

<phys-level> is physical level of the item as specified in the Cobol program.
Has exactly 2 numeric decimal characters.
Can be: 01, 02, ..., 05, 06, ..., 10, ..., 49.

<name> is the name of the data item.

Conforms to Cobol rules for user-defined names.
If name is empty (@ character), then

this is FILLER data item.

<category> is effective category of the data item.
It can have on the following values:

G group item

I index

P pointer

PP procedure pointer

A alphabetic

N numeric

AN alphanumeric

AE alphanumeric edited
NE numeric edited

IF internal float

EF external float

B bit

J national (usually Japanese)
JE national edited

<usage> is effective USAGE clause of the data item.

Effective usage means: If this item has no usage clause, then

the usage clause of the nearest ancestor of the data item is used.
If none of ancestors has usage clause, then USAGE DISPLAY is used.
Usage can be one of the following:

B BIT (FSC)

c BINARY (COMP)

CR RM COMP (DISPLAY-like)
D DISPLAY

DM DISPLAY by MicroFocus
DF DISPLAY by Fujitsu

DR DISPLAY by RyanMcFarland
D1 DISPLAY-1 (DBCS)

I INDEX

PT POINTER

PP PROCEDURE-POINTER

PD COMP-3, PACKED-DECIMAL

45

COMP-0 (MS: same as COMP)

1 COMP-1 (internal float)

1R COMP-1 by RM (binary)

2 COMP-2 (internal float)

4 COMP-4 (same as BINARY)

5 COMP-5 (variation of BINARY)
6R COMP-6 (RM)

X COMP-X (variation of BINARY)

On DM, DJ and DR: D (generic DISPLAY) will work in place of DM, DJ, and DR
most of the time and you do not need to specify DM, DJ or DR.

However, if you link fields in Data2Cr, then the actual DM, DJ or DR
specifiers must be used.

cbl2fdd generates these specifiers based on the value of -lang option.

<sign> is effective SIGN clause of the data item.
It can be one of the following:

L SIGN IS LEADING

LS SIGN IS LEADING SEPARATE
T SIGN IS TRAILING

TS SIGN IS TRAILING SEPARATE
© no sign clause

<occurs-from> <occurs-to> describes the OCCURS clause of the data item:

Q Q no OCCURS clause
<nl> @ OCCURS <n1> TIMES
<nl1> <n2> OCCURS <n1> TO <n2> TIMES DEPENDING ON ...

<offset> is decimal number that encodes
byte offset of this data item from the start of the record.
Can be 0, 1, 2, and up.

<bit-offset> is decimal number that encodes

bit offset of this data item from the start of the byte
designated in <offset>. Can be not O only for BIT items.
Thus <full-bit-offset> = <offset>*8 + <bit-offset>.

<length> is decimal number that encodes
length of this data item in bytes.

For BIT items <length> is is also in bytes.
The length of BIT item in bits is equal

to the length of unrolled picture string
of the item.

<picture> is PICTURE clause character string.

46

<date-picture>, if it is present, tells the systems that
this data item contains date and/or time and it gives
the format of date/time presentation.

Using this format, the system parses the date/time data item
and stores it internally as a date/time item, so that

at output time date/time-specific formatting can be applied
to this data item.

<date-picture> can be present only in numeric and numeric-edited data items.
The number that represents date/time is parsed by the system
according to the format specified in <date-picture>.

<date-picture> can contain the following substrings:

YY 2-digit year
YYYY 4-digit year

MM 2-digit month: °’ 1’, ’01’, ’ 27, °02°, ..., ’11’, ’12’
DD 2-digit day: ’ 1°, 01, > 27, 027, ..., ’307, ’31’
HH 2-digit hour: ’00’, > 07, 2 2, 21>, 7’01, ..., 23’
NN 2-digit minute: ’00’, °’01’, ..., ’59’
SS 2-digit second: ’00’, ’01°, ..., ’59’
B Unused position
A1l characters used for separating different time components (’/’ ’:’ ’,’ ’.°)

are removed from the the data item before analyzing it using
this template.

That is, if you have numeric-edited data item which
stores date time as "98/12/31 23:59:59", then it

is turned into numeric data item 981231235959

you should use <date-picture> YYMMDDHHNNSS

to recognize this number as date-time.

* DECIMALPOINT line defines a character used to represent decimal point
for numeric edited data items.

DECIMALPOINT <COMMA | PERIOD>

If this line is omitted, "DECIMALPOINT PERIOD" assumed.

* CURRENCYCHAR line defines a character used as currency symbol.
CURRENCYCHAR <char>
If this line id omitted, CURRENCYCHAR "$" assumed.

47

* ALPHABET line defines alphabet used for file. It may be EBCDIC or ASCII.
If this line is ommitted, assumed alphabet is ASCII.

* APPLIED_TO may be optionally specified in ALPHABET line after alphabet
definition. Valid values are ALL and DISPLAY_ONLY. If "APPLIED_TO ALL"
specified, all data read from file should be converted from file’s alphabet
(some compilers like MicroFocus allow CODE-SET keyword for non-DISPLAY
data items). "APPLIED_TO DISPLAY_ONLY" (the default) means that alphabet
conversion must be applied to data items whose usage is DISPLAY.

* RECORDLENGTH line defines fixed (minimal) record length.

RECORDLENGTH <nReclen>
<nReclen> is fixed record length.

* MAXRECORDLENGTH line defines maximal record length.

Maximal record length is more than fixed record length in case of
variable record length (OCCURS..DEPENDING ON present in

record definition).

MAXRECORDLENGTH <nMaxreclen>
<nMaxreclen> is maximal record length.

Real record length lies between nReclen and nMaxreclen.

5.2 Cobol Data File Format Guess Program

data-guess guesses both file format and record layout for Cobol data files that it recognizes.
To see a list of data file formats that the program recognizes, start it without any arguments.

data-guess generates FDD and RDD files for a given Cobol data file, if it can recognize the
file format.

Please note that DataGuess cannot fully recover the RDD file, it only gives you a good approx-
imation of the record layout that you can later adjust manually.

Specifically, data items in the generated record layout have generated names that are not mean-
ingful; several neighboring data items of similar type will be merged into one big data item.

5.2.1 Options

e -help
Print list of command-line options.
Default: Off.

e -out-rdd

48

5.3

data2flat converts Cobol data file (sometimes also called VSAM or ISAM file) to flat data file.

In flat file every record occupies exactly one line and data items on the line are separated by
separator character (usually comma). Flat file contains text representation of all data items in a

file.

data2flat converts Cobol data files, not Cobol programs, so it does not accept standard Cobol
parser and pretty-printer options. All accepted options are listed below.

Write generated RDD to this file.

Default: console.

-out-fdd
Write generated FDD to this file.

Default: console.

-format-hint

This is a file format hint that helps to distinguish between close formats. For instance, record
storage and indexing techniques used in FSC and RM Cobol are pretty much the same, while
data item representation format is different. Providing hint in this case helps DataGuess with

breaking the record into individual fields.

Default: no hints.

Cobol Data File To Flat File Converter

5.3.1 Options

-help

Print list of command-line options.
Default: Off.

-v

Print the current version of the tool.
Default: Off.

-progress

Print conversion progress message every 250 records.
Default: Off.

-silent

Suppress runtime messages (file openings, etc.).
Default: Off.

-show-descr

Display the loaded FDD and RDD file descriptor.
Default: Off.

49

e -out-file
Write flat data to this file.
Default: input file with suffix changed to .f1t.

e -separator
Separate fields in a flat file record using this string.
Default: ”,” (comma).

e -quote

Character used to quote character data items in the flat file. If quote character itself is a part
of the character data item, double the quote character.

Default: none.

® -max-recs
Number of records to convert. If -max-recs=0, then convert all records.
Default: 0 (All records).

e -dump-items

List of fields to be dumped in the format specified in -dump-format, up to 25. By default, data
items specified in -dump-items and group data items are dumped in hexadecimal format.

Default: none.

e -dump-format

Specify the dump format used for data items specified in -dump-items and for group data
items. Can be one of the following:

hex Hexadecimal
alpha Text (alphanumeric)

Default: hex.

e -ecurope-date

Print dates as DD.MM.YYYY (Europe format). By default, dates are printed as
MM/DD/YYYY (American foamat).

Default: Off.

5.4 Cobol Data File To DBase IV DBF File Converter

data2dbf converts Cobol data file to DBF data file. DBF is a file format used by dBase IV database.
You can import DBEF files into Microsoft Excel and other spreadsheet and reporting software.

data2dbf converts Cobol data files, not Cobol programs, so it does not accept standard Cobol
parser and pretty-printer options. All accepted options are listed below.

50

5.4.1 Options

e -help
Print list of command-line options.
Default: Off.

e -V

Print the current version of the tool.
Default: Off.
® -progress
Print conversion progress message every 250 records.
Default: Off.

e -show-descr
Display the loaded FDD and RDD file descriptor.
Default: Off.
e -out-file
Write flat data to this file.
Default: input file with suffix changed to .f1t.

5.5 Crystal Reports Cobol Data Reader DLLs

Cobol data files driver for Crystal Reports (CR)

Features

1. Reads Cobol data files produced by FSC and MF Cobol programs.
2. Links several data files in one report using indexes.
3. Links from DBF files to Cobol data files and,

in some cases, from Cobol data files to DBF files.

FDD and RDD files: File Descriptors

Files with *.FDD and *.RDD extension contain
all the data that Data2Cr needs from a Cobol program
to read the actual Cobol data file.

Since Cobol data file does not have record descriptor data embedded,

we have to go thru extra layer of FDD and RDD files that connect
physical file to record description.

51

FDD file contains data from SELECT statement for a file,
such as file organization and access method.
FDD file also contains a link to the actual Cobol data file.

RDD file contains data from FD statement for a file.
SPeicifically, it contains record layout.

FDD and RDD file formats are described in Cbl2Fdd manual.

More on this at http://www.siber.com/sct/datafile/

Cbl2Fdd Program

Siber Systems supplies a separate program called CBL2FDD.
This program automatically generates FDD and RDD files
from Cobol programs in many dialects, including FSC Cobol.

Please note that Data2Cr installer does NOT install CBL2FDD.
You need to install CBL2FDD as a separate product.

Cbl2Fdd is distributed as one WIN32 executable file
that self-extracts and then installs Cbl2Fdd.

Please see CBL2FDD distribution for details.

Installation

* Just run the executable distribution file that is named
fscdata2cr-3-5-6-fsc.exe, mfdata2cr-3-5-6-sib.exe or similar to that.

* When installer asks, whether you want to
copy file "p2bfsc.dll" ("p2bmf.d1l1l" for MF reader)
to $systemroot\Crystal, answer "Yes".
Our DLL becomes useable by
Crystal Reports only after being copied
to $systemroot\Crystal directory.

DLL conflicts

* Standard P2BBDE.DLL that comes with CR recognizes

52

any file that is longer than 31 bytes as its own.
It recognizes FDD files too (if they are longer than 31 bytes) and
therefore it prevents our P2BFSC.DLL (P2BMF.DLL) from recognizing FDD file.

When P2BBDE.DLL takes over, you would see
only "FIELD1" in the list of fields and nothing else.

* In Crystal Reposrts ver 6 and later there is a bug

in P2BBTRV.DLL. It sometiems results in error message

"Could not open pdbbtrv.dll. Please check its configuration"
when you try to open FDD file. Whether the bug appears

or not depends on physical order of DLLs in directory.

We recommend 2 ways to fix it:
- Method 1 (preferred method implemented by Data2Cr installer):

Remove P2BBDE.DLL and P2BBTRV.DLL from $systemroot\Crystal.

Save it in some other directory, say, $systemroot\CrystalDisabled,
so that when you need its functionality, you can move

it back to $systemroot\Crystal.

Shortcomings: Paradox, Btrieve and other databases that
are read by P2BBDE.DLL and P2BBTRV.DLL will not be
loadable to CR.

Advantages: simple and makes Cobol stuff work.

Crystal Reports 4.5 has no P2BBDE.DLL,

so there is no need to remove it.

- Method 2:

This method is more complicated but it allows you
to use both Cobol and BDE/Btrieve file reading DLLs.

<<< DO NOT USE THIS METHOD UNLESS YOU REALLY KNOW WHAT YOU ARE DOING <<< start
a) if you used Data2Cr installer that performed Method 1,

then you would need to move P2BBDE.DLL and P2BBTRV.DLL

back to $systemroot\Crystal.
b) If you installed CR version 6 or later then you have

defective P2BBTRV.DLL. Replace it with P2BBTRV.DLL
from CR versions before 6 or simply disbale it by

93

moving it to $systemroot\CrystalDisabled.

c) Rename P2BXBSE.DLL to P2BDBSE.DLL in $systemroot\Crystal.
This will force CR database manager to look for
extra DLLs in $systemroot\Crystal.

d) For every FDD file create file with the same base name,
but different extension. We use FDL extension.
For instance, for file TEST.FDD create file TEST.FDL.
FDL files must be shorter than 31 bytes, so let us
make it just one byte long by puttng in one empty line.
Contents of FDL file do not matter.

FDL file will not be recognized by P2BBDE.DLL because

they are less than 32 bytes long, and then

our DLL can pick them up. It will translate FDL extension

to FDD extension and then it will load FDD file instead.

For this example TEST.FDD file will be loaded instead of TEST.FDL.

>>> DO NOT USE THIS METHOD UNLESS YOU REALLY KNOW WHAT YOU ARE DOING >>> end

How To Open Cobol data files in Crystal Reports

When adding a Data Source to report select Data File.
Ask Open Dialogue to list "All Files".

Select a file with *.FDD extension that has format as described above
(select *.FDL file if you are using method 2 of fighting DLL conflicts).

If filenames/paths in FDD file are correct,

data from RDD and VSAM files will be loaded and
you will see fields of the virtual database
created by Data2Cr DLL from your Cobol data file.

Example and Test

Start Seagate Crystal Reports Designer.
Create new Standard report by selecting File.New.

Click "DataFile" button. List files of type: All files.
Select file-fsc.fdd (for FSC) or file-mf.fdd (for MF)

o4

file in Data2Cr distribution directory
which usually is D:\Program Files\Siber Systems\fscdata2cr or mfdata2cr.
Once the file is parsed, click Done to close the dialogue.

Click Field tab. Now you should see all the fields from
the Cobol record listed: OUT-KEY, 0UT-S-COMP-3, ..., FS-DISPLAY.
Click AddAll to add all of them to the report.

Finally click PreviewReport to see the report
generated from the Cobol data file.

OCCURS issues

Data item: name OCCURS n TIMES PIC p USAGE u
is presented both:
- as a concatenation of n items that has "PIC p(n) USAGE u" format, and
- as n items with names name_1, name_2, ..., name_n,
each having "PIC p USAGE u" format.

Data items with USAGE IS BIT

This library can read data items with USAGE IS BIT. Since
CR cannot show numeric data in format other of decimal, we convert
such data to strings. These strings can be used as index pattern
for file linking; they cannot be used as index keys.

Fixing Y2K

For Crystal Reports, all dates must come in 4-digits-year format. This
is not always so. To fix it, this library will automatically 2-digits-year
dates to 4-digits-year dates. Rule for this conversion is following:
if year is less than 40, it will be converted to 20YY, otherwise, to 19YY.

Known issues in FSC F3BIFCFA library

We use F3BIFCFA library from Fujitsu to access
Fujitsu COBOL data file. This library has bugs/features
that may adversely affect functionality of Data2Cr.

1. If you install Sibver Systems FscData2Cr on a computer

95

that has *no* Fujitsu compiler installed then you need

to add to your PATH FscData2Cr directory that contains
F3BIFCFA.DLL and F3BIFRM.DLL used in reading data files
(usually \Program Files\Siber Systems\fscdata2cr).

If you do not do it, then you will get the following error:
"Configuration Error. Library pdbfsc.dll cannot be opened.
Please check its configuration".

2. Sometimes it is not possible to read file for which access mode is
LINE SEQUENTIAL and which contains numeric data with USAGE other than
DISPLAY. If \n or \r bytes are contained in numeric field

(it is possible for USAGE BINARY/COMP-* data items),

F3BIFCFA treats such bytes as the end or fecord.

This is fixed by changing access mode to RECORD SEQUENTIAL and
adding explicit FILLER field to the end of record to cover CR/LF.

3. Since F3BIFCFA has no way of accepting information on USAGEs of fields,
it treats all fields as strings even when using these fields for indexing.

For instance, if COMP-1 field for which ordering dictated by string
representation of value image is different from correct ordering
dictated by Cobol field interpretation as a number

is used as a part of index in INDEXED file, then

one cannot retrieve records using such indices.

The following data format combinations cause misordering by F3BIFCFA:
- USAGE is COMP-1, COMP-2, or COMP-5
- SIGN IS TRAILING / SIGN IS TRAILING SEPARATE / SIGN IS LEADING.

This problems prevents linking files that use such record keys.

Valid combinations are:

USAGE IS DISPLAY. SIGN IS LEADING SEPARATE.

USAGE IS BINARY. (positive values only)

USAGE IS COMP. (positive values only)

USAGE IS COMP-3. SIGN IS LEADING SEPARATE.

USAGE IS COMP-3. SIGN IS LEADING. (positive values only).

Data2Cr does not report these problem,
it just calls F3BICFA which results in records not being found.

FAQ

Q: How do I handle keys that are group items?

26

A: Group data items (the ones that are not elementary
data items) cannot be used as indices.

However, you can use a concatenation

of elementary items in a group as a key.

Say, you have the following program:

000070 SELECT OPTIONAL SCA1060 ASSIGN TO WS-SCA1060
000080 ORGANIZATION IS INDEXED
000090 ACCESS MODE IS DYNAMIC
000100 RECORD KEY IS SCA1060-CHAVE
000110 ALTERNATE RECORD KEY IS SCA1060-CHAVE-1
000120 WITH DUPLICATES
000110 ALTERNATE RECORD KEY IS SCA1060-CHAVE-2
000120 WITH DUPLICATES
000110 ALTERNATE RECORD KEY IS SCA1060-CHAVE-3
000120 WITH DUPLICATES
000130 LOCK MODE IS AUTOMATIC WITH LOCK ON RECORD
000140 FILE STATUS IS WS-STATUS.
FD SCA1060 IS GLOBAL.
01 SCA1060-REG.
03 SCA1060-CHAVE. // Cannot use this; instead, use —----+
05 SCA1060-CODIGO PIC 9(006). <—===—=—=———————————— +
03 SCA1060-CHAVE-1.
05 SCA1060-NOME PIC X(040).

03 SCA1060-CHAVE-2. // Cannot use this; instead, use all of -+
05 SCA1060-CODFEITO PIC 9(005). <---+ |
05 SCA1060-NOME-2 PIC X(040). <———4-————————————— +
05 SCA1060-CODIGO-2 PIC 9(006). <---+

03 SCA1060-NOMEFEITO PIC X(040).

03 SCA1060-CHAVE-3.

05 SCA1060-CODTPVARA PIC 9(004).
05 SCA1060-NOME-3 PIC X(040).
05 SCA1060-CODIGO-3 PIC 9(006).
03 SCA1060-NOMETPVARA PIC X(040).

Here all record keys are group items.
Crystal will not show content of such
items, since their format is unknown.

So to link this file as a slave file

you should use SCA1060-CODIGO instead of SCA1060-CHAVE;

or, you can use SCA1060-CODFIETO,SCA1060-NOME-1,SCA1060-CODIGO-2
instead of SCA1060-CHAVE2.

57

Copyright 1998-2000 by Siber Systems.
All rights reserved.

58

Chapter 6

Legal

6.1 Paid-For and Shareware Tool License

SIBER SYSTEMS INC
END USER SOFTWARE LICENSE AGREEMENT

IMPORTANT: You should carefully read this legal agreement before
installing this package. By installing this software, you accept all
the terms and conditions of this agreement and agree to abide by them.
If these terms and conditions are not acceptable to you, do NOT
continue to install this software and return it to your distributor
and your money will be refunded.

SIBER SYSTEMS PROGRAMS LICENSE TERMS

Siber Systems Inc ("Siber") grants you ("Customer") a license
to use the enclosed software and documentation ("Programs")
as indicated below.

LICENSE: Customer shall have the right to use the Programs, either
(a) to the extent specified in an ordering document or

Program Use Certificate distributed to Customer by

Siber Systems or its distributor, or

(b) if not specified, for a single user on a single computer.

Customer may use the Programs solely for its own internal
data processing operations. Customer may make one copy of
each licensed Program for backup; rights to make additional
copies, if any, may be specified in an ordering document or
Program Use Certificate. No other copies shall

be made without Siber Systems prior written consent.

Customer shall not:
(a) remove any product identification, copyright notices,

99

or other notices or proprietary restrictions from Programs;

(b) use Programs for commercial timesharing, rental,

or service bureau use;

(c) transfer, sell, assign or otherwise convey Programs to
another party without Siber Systems prior written consent;

(d) cause or permit reverse engineering, disassembly,

or decompilation of Programs; or

(e) disclose results of any benchmark tests of any Program

to any third party without Siber Systems prior written approval.

All Program transfers are subject to Siber Systems transfer
policies and fees. Customer shall have the right to use only
the Programs in this package that are specified in an ordering
document or Program Use Certificate.

COPYRIGHT/OWNERSHIP OF PROGRAMS: Programs are the proprietary
products of Siber Systems and its licensors and are protected
by copyright and other intellectual property laws.

Customer acquires only the right to use Programs and

does not acquire any rights, express or implied, in

Programs or media containing Programs other than

those specified in this License.

Siber Systems, or its licensor, shall at all times retain

all rights, title, interest, including intellectual

property rights, in Programs and media.

LIMITED WARRANTIES/EXCLUSIVE REMEDIES: Siber Systems warrants
that for thirty (30) days from date of delivery to Customer:
(a) enclosed media is free of defects in materials and
workmanship under normal use; and

(b) unmodified Programs will substantially perform functions
described in documentation provided by Siber Systems when
operated on the designated computer and operating system.

Siber Systems does NOT warrant that:

Programs will meet Customer’s requirements,

Programs will operate in combinations Customer may select for use,
operation of Programs will be uninterrupted or error-free, or

all Program errors will be corrected.

These warranties are exclusive and in lieu of all other

warranties, whether express or implied, including implied warranties
of merchantability or fitmess for a particular purpose.

If Customer reports an error in a Program within

the thirty (30) day period, Siber Systems shall, at its option,
correct the error, provide Customer with a reasonable procedure
to circumvent the error, or, upon return of Programs

60

to Siber Systems by Customer, refund the license fees.

Siber Systems will replace any defective media without charge if

it is returned to Siber within the thirty (30) day warranty period.
These are Customer’s sole and exclusive remedies for any breach of
warranty. This limited warranty gives you specific legal rights.
You may have others, which vary from state to state.

LIMITATION OF LIABILITY: NEITHER SIBER SYSTEMS NOR ANY OF

ITS LICENSORS SHALL BE LIABLE FOR ANY INDIRECT, INCIDENTAL,

SPECTAL OR CONSEQUENTIAL DAMAGES, OR DAMAGES FOR LOSS OF PROFITS,
REVENUE, DATA OR DATA USE, INCURRED BY CUSTOMER OR ANY THIRD PARTY,
WHETHER IN AN ACTION IN CONTRACT OR TORT, EVEN IF SIBER SYSTEMS
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

SIBER SYSTEMS AND ITS LICENSORS’ LIABILITY FOR DAMAGES

HEREUNDER SHALL IN NO EVENT EXCEED THE FEES PAID BY CUSTOMER

FOR THIS LICENSE.

TECHNICAL SUPPORT: Siber Systems will provide limited
technical support to purchasers of this Program for
thirty (30) days after its purchase and receipt of payment
for the Program. Technical support can be obtained via
e-mail at support@siber.com.

Siber Systems acknowledges all trademarks found in
this license, in the software package, and in
the documentation.

RESTRICTED RIGHTS: Programs delivered to the U.S. Defense Dept.
are delivered with Restricted Rights and the following applies:
"Restricted Rights Legend: Use, duplication or disclosure by the
Government is subject to restrictions as currently set forth in
subparagraph (c)(1)(ii) the Rights in Technical Data and Computer
Software clause at 252.227-7013 (or any successor regulation).
Siber Systems Inc., 2902 Rock Manor Ct, Herndon, VA 20171".

Programs delivered to a U.S. Government Agency not within the Defense,
Dept. are delivered with "Restricted Rights" as defined in Commercial
Computer Software - Restricted Rights at FAR 52.227-19.

Customer shall comply fully with all laws and regulations of the
United States and other countries (Export Laws) to assure that
neither the Programs, nor any direct products thereof are

(1) exported, directly or indirectly, in violation of Export Laws, or
(2) are used for any purpose prohibited by Export Laws, including,
without limitation, nuclear, chemical, or biological weapons
proliferation. This License and all related actions shall be governed
by Virginia law.

61

Siber Systems may audit Customer’s use of the Programs. All terms of any
Customer purchase order or other Customer ordering document shall be
superseded by this License.

6.2 Trial Tool License

SIBER SYSTEMS INC
EVALUATION SOFTWARE LICENSE AGREEMENT

IMPORTANT: YOU SHOULD CAREFULLY READ THIS LEGAL AGREEMENT
BEFORE INSTALLING THIS PACKAGE. BY INSTALLING THIS SOFTWARE,
YOU ACCEPT ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT AND
AGREE TO ABIDE BY THEM. IF THESE TERMS AND CONDITIONS ARE

NOT ACCEPTABLE TO YOU, DO NOT CONTINUE TO INSTALL THIS SOFTWARE.

SIBER SYSTEMS PROGRAM LICENSE TERMS

Siber Systems Inc ("SIBER") grants you ("Customer") a license
to use the enclosed software and documentation ("Programs")
as indicated below.

LICENSE: Customer shall have the limited right to use

the Programs for evaluation purposes for Thirty (30) days.
Programs are trial version and applications converted

by Programs cannot be distributed commercially.

Customer can use the applications only to evaluate Programs.

Customer shall not:

(a) remove any product identification, copyright notices, or
other notices or proprietary restrictions from Programs;

(b) use Programs for commercial purposes or for timesharing,
rental, or service bureau use;

(c) transfer, sell, assign or otherwise convey Programs

to another party without Siber Systems prior written consent;
(d) cause or permit reverse engineering, disassembly, or
decompilation of Programs; or

(e) disclose results of any benchmark tests of any Program
to any third party without Siber Systems prior written approval.
Any Program transfers permitted by Siber Systems hereunder
are subject to Siber Systems transfer policies and fees.

COPYRIGHT/OWNERSHIP OF PROGRAMS: Programs are the proprietary

products of Siber Systems and its licensors and are protected by
copyright and other intellectual property laws.

Customer acquires only the right to use Programs for evaluation purposes

62

and does not acquire any rights, express or implied, in Programs or

media containing Programs other than those specified in this License.

Siber Systems, or its licensor, shall at all times retain all rights,

title, interest, including intellectual property rights, in Programs and media.

NO WARRANTIES: THIS IS AN EVALUATION COPY OF THE PROGRAMS.
SIBER SYSTEMS IS PROVIDING THE PROGRAMS AS IS WITHOUT

ANY WARRANTY OF ANY KIND AND FURTHER DISCLAIMS ALL IMPLIED
AND STATUTORY WARRANTIES INCLUDING THE WARRANTIES OF TITLE,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
EVALUATION SOFTWARE SHOULD NOT BE USED FOR

PRODUCTION USE OR WITH LIVE DATA.

LIMITATION OF LIABILITY: NEITHER SIBER SYSTEMS NOR

ANY OF ITS LICENSORS SHALL BE LIABLE FOR ANY INDIRECT,

INCIDENTAL, EXEMPLARY, PUNITIVE, SPECIAL OR CONSEQUENTIAL DAMAGES,
OR DAMAGES FOR LOSS OF GOODWILL, PROFITS, REVENUE, DATA OR DATA USE,
INCURRED BY CUSTOMER OR ANY THIRD PARTY, WHETHER IN AN ACTION,

IN CONTRACT OR TORT, EVEN IF SIBER SYSTEMS HAS BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGES.

RESTRICTED RIGHTS: Programs delivered to the U.S. Defense Dept.
are delivered with Restricted Rights and the following applies:
"Restricted Rights Legend: Use, duplication or disclosure by the
Government is subject to restrictions as currently set forth in
subparagraph (c)(1)(ii) the Rights in Technical Data and Computer
Software clause at 252.227-7013 (or any successor regulation).
Siber Systems Inc., 2902 Rock Manor Ct, Herndon, VA 20171".

Programs delivered to a U.S. Government Agency not within the Defense,
Dept. are delivered with "Restricted Rights" as defined in Commercial
Computer Software - Restricted Rights at FAR 52.227-19.

COOPERATION: Customer shall promptly report any bugs or other defects
to Siber Systems. Customer agrees to participate with Siber Systems
in selected marketing activities related to the Programs.

GENERAL: Siber Systems may audit Customer’s use of the Programs.
This License states the full understanding of the parties regarding
Customer’s use of the Programs.

All terms of any Customer purchase order or other Customer ordering
document shall be superseded by this License.

63

